On the Orlicz-Brunn-Minkowski theory

C. J. Zhao

Abstract. Recently, Gardner, Hug and Weil developed an Orlicz-Brunn-Minkowski theory. Following this, in the paper we further consider the Orlicz-Brunn-Minkowski theory. The fundamental notions of mixed quermassintegrals, mixed p-quermassintegrals and inequalities are extended to an Orlicz setting. Inequalities of Orlicz Minkowski and Brunn-Minkowski type for Orlicz mixed quermassintegrals are obtained. One of these has connections with the conjectured log-Brunn-Minkowski inequality and we prove a new log-Minkowski-type inequality. A new version of Orlicz Minkowski’s inequality is proved. Finally, we show Simon’s characterization of relative spheres for the Orlicz mixed quermassintegrals.

M.S.C. 2010: 52A20, 52A30.

Key words: L^p addition; Orlicz addition; Orlicz mixed volume; mixed quermassintegrals; mixed p-quermassintegrals; Orlicz mixed quermassintegrals; Orlicz-Minkowski inequality; Orlicz-Brunn-Minkowski inequality.

1 Introduction

One of the most important operations in geometry is vector addition. As an operation between sets K and L, defined by

$$K + L = \{x + y \mid x \in K, y \in L\},$$

it is usually called Minkowski addition and combine volume play an important role in the Brunn-Minkowski theory. During the last few decades, the theory has been extended to L^p-Brunn-Minkowski theory: The first, a set called as L^p addition, introduced by Firey in [6] and [7]. Denoted by $+_p$, for $1 \leq p \leq \infty$, defined by

$$h(K +_p L, x)^p = h(K, x)^p + h(L, x)^p,$$

for all $x \in \mathbb{R}^n$ and compact convex sets K and L in \mathbb{R}^n containing the origin. When $p = \infty$, (1.1) is interpreted as $h(K +\infty L, x) = \max\{h(K, x), h(L, x)\}$, as is customary. Here the functions are the support functions. If K is a nonempty closed (not necessarily bounded) convex set in \mathbb{R}^n, then

$$h(K, x) = \max\{x \cdot y \mid y \in K\},$$
for \(x \in \mathbb{R}^n \), defines the support function \(h(K, x) \) of \(K \). A nonempty closed convex set is uniquely determined by its support function. \(L_p \) addition and inequalities are the fundamental and core content in the \(L_p \)-Brunn-Minkowski theory. For recent important results and more information from this theory, we refer to [12], [13], [14], [15], [20], [22], [23], [24], [25], [26], [27], [30], [31], [35], [36], [37] and the references therein. In recent years, a new extension of \(L_p \)-Brunn-Minkowski theory is to Orlicz-Brunn-Minkowski theory, initiated by Lutwak, Yang, and Zhang [28] and [29]. In these papers the notions of \(L_p \)-centroid body and \(L_p \)-projection body were extended to an Orlicz setting. The Orlicz centroid inequality for star bodies was introduced in [39] which is an extension from convex to star bodies. The other articles advance the theory can be found in literatures [11], [17], [18] and [32]. Very recently, Gardner, Hug and Weil ([9]) constructed a general framework for the Orlicz-Brunn-Minkowski theory, and made clear for the first time the relation to Orlicz spaces and norms.

They introduced the Orlicz addition \(K + \varphi \) of compact convex sets \(K \) and \(L \) in \(\mathbb{R}^n \) containing the origin, implicitly, by

\[
\varphi \left(\frac{h(K, x)}{h(K + \varphi L, x)}, \frac{h(L, x)}{h(K + \varphi L, x)} \right) = 1,
\]

for \(x \in \mathbb{R}^n \), if \(h(K, x) + h(L, x) > 0 \), and by \(h(K + \varphi L, x) = 0 \), if \(h(K, x) = h(L, x) = 0 \).

Here \(\varphi \in \Phi_2 \), the set of convex functions \(\varphi : [0, \infty)^2 \to [0, \infty) \) that are increasing in each variable and satisfy \(\varphi(0, 0) = 0 \) and \(\varphi(1, 0) = \varphi(0, 1) = 1 \).

Unlike the \(L_p \) case, an Orlicz scalar multiplication cannot generally be considered separately. The particular instance of interest corresponds to using (1.2) with \(\varphi(x_1, x_2) = \varphi_1(x_1) + \varphi \varphi_2(x_2) \) for \(\varepsilon > 0 \) and some \(\varphi_1, \varphi_2 \in \Phi \), in which case we write \(K + \varphi_{\varepsilon} \) \(L \) instead of \(K + \varphi \) \(L \), where \(\varphi_{\varepsilon} : [0, \infty) \to (0, \infty) \) that are increasing and satisfy \(\varphi_i(1) = 1 \) and \(\varphi_i(0) = 0 \), where \(i = 1, 2 \). Orlicz addition reduces to \(L_p \) addition, \(1 \leq p < \infty \), when \(\varphi(x_1, x_2) = x_1^p + x_2^p, \) or \(L_\infty \) addition, \(\varphi(x_1, x_2) = \max\{x_1, x_2\} \). Moreover, Gardner, Hug and Weil ([9]) introduced the Orlicz mixed volume, obtaining the equation

\[
\frac{(\varphi_1);(1)}{n} \lim_{\varepsilon \to 0^+} \frac{V(K + \varphi_{\varepsilon} L) - V(K)}{\varepsilon} = \frac{1}{n} \int_{S^{n-1}} \varphi_2 \left(\frac{h(L, u)}{h(K, u)} \right) h(K, u) dS(K, u),
\]

where \(S(K, u) \) is the mixed surface area measure of \(K \) and \(\varphi \in \Phi_2, \varphi_1, \varphi_2 \in \Phi \).

Here \(K \) is a convex body containing the origin in its interior and \(L \) is a compact convex set containing the origin, assumptions we shall retain for the remainder of this introduction.

Denoting by \(V_\varphi(K, L) \), for any \(\varphi \in \Phi \), the integral on the right side of (1.3) with \(\varphi \varphi_2 \) replaced by \(\varphi \), we see that either side of the equation (1.3) is equal to \(V_\varphi(K, L) \) and therefore this new Orlicz mixed volume plays the same role as \(V_p(K, L) \) in the \(L_p \)-Brunn-Minkowski theory. In [9], Gardner, Hug and Weil obtained the Orlicz-Minkowski inequality.

\[
V_\varphi(K, L) \geq V(K) \cdot \varphi \left(\frac{V(L)}{V(K)} \right)^{1/n},
\]

for \(\varphi \in \Phi \). If \(\varphi \) is strictly convex, equality holds if and only if \(K \) and \(L \) are dilates or \(L = \{o\} \).
In Section 3, we compute the Orlicz first variation of quermassintegrals, call as Orlicz mixed quermassintegrals, obtaining the equation
\begin{equation}
\frac{\varphi_1}{n-i} \lim_{\epsilon \to 0^+} W_i(K + \varphi, \epsilon L) - W_i(K) = \frac{1}{n} \int_{S^{n-1}} \varphi_2 \left(\frac{h(L, u)}{h(K, u)} \right) h(K, u) dS_i(K, u).
\end{equation}
for \(\varphi \in \Phi_2\), \(\varphi_1, \varphi_2 \in \Phi\) and \(1 \leq i \leq n\), and \(W_i\) denotes the usual quermassintegrals, and \(S_i(K, u)\) is the \(i\)-th mixed surface area measure of \(K\). Denoting by \(W_{\varphi, i}(K, L)\), for any \(\varphi \in \Phi\), the integral on the right side of (1.5) with \(\varphi_2\) replaced by \(\varphi\), we see that either side of the equation (1.5) is equal to \(W_{\varphi, i}(K, L)\) and therefore this new Orlicz mixed volume (Orlicz mixed quermassintegrals) plays the same role as \(W_{\varphi, i}(K, L)\) in the \(L_p\)-Brunn-Minkowski theory. Note that when \(i = 0\), (1.5) becomes (1.3). Hence we have the following definition of Orlicz mixed quermassintegrals.

\begin{equation}
W_{\varphi, i}(K, L) = \frac{1}{n} \int_{S^{n-1}} \varphi \left(\frac{h(L, u)}{h(K, u)} \right) h(K, u) dS_i(K, u).
\end{equation}
In Section 4, we establish Orlicz-Minkowski inequality for the Orlicz mixed quermassintegrals.

\begin{equation}
W_{\varphi, i}(K, L) \geq W_i(K) \cdot \varphi \left(\frac{W_i(L)}{W_i(K)} \right)^{1/(n-i)},
\end{equation}
for \(\varphi \in \Phi\) and \(0 \leq i \leq n\). If \(\varphi\) is strictly convex, equality holds if and only if \(K \) and \(L\) are dilates or \(L = \{0\}\). Note that when \(i = 0\), (1.7) becomes to (1.4). In particularly, putting \(\varphi(t) = t^p\), \(1 \leq p < \infty\) in (1.7), (1.7) reduces to the following \(L_p\)-Minkowski inequality for mixed \(p\)-quermassintegrals established by Lutwak [21].

\begin{equation}
W_{p, i}(K, L)^{n-i} \geq W_i(K)^{n-i-p} W_i(L)^p,
\end{equation}
for \(p > 1\) and \(0 \leq i \leq n\), with equality if and only if \(K \) and \(L\) are dilates or \(L = \{0\}\). Putting \(i = 0\), \(\varphi(t) = t^p\) and \(1 \leq p < \infty\) in (1.7), (1.7) reduces to the well-known \(L_p\)-Minkowski inequality established by Firey [7]. For \(p > 1\),

\begin{equation}
V_p(K, L) \geq V(K)^{(n-p)/n} V(L)^{p/n},
\end{equation}
with equality if and only if \(K \) and \(L\) are dilates or \(L = \{0\}\).

In Section 5, we establish the following Orlicz-Brunn-Minkowski inequality for quermassintegrals of Orlicz addition.

\begin{equation}
1 \geq \varphi \left(\frac{W_i(K)}{W_i(K + \varphi L)} \right)^{1/(n-i)} \cdot \left(\frac{W_i(L)}{W_i(K + \varphi L)} \right)^{1/(n-i)},
\end{equation}
for \(\varphi \in \Phi_2\) and \(0 \leq i \leq n\). If \(\varphi\) is strictly convex, equality holds if and only if \(K \) and \(L\) are dilates or \(L = \{0\}\). Note that when \(\varphi(x_1, x_2) = x_1^p + x_2^p\), \(1 \leq p < \infty\) in (1.11), (1.11) reduces to the following \(L_p\)-Brunn-Minkowski inequality for quermassintegrals established by Lutwak [21]. If

\begin{equation}
W_i(K +_p L)^{p/(n-i)} \geq W_i(K)^{p/(n-i)} + W_i(L)^{p/(n-i)},
\end{equation}
with equality if and only if \(K \) and \(L \) are dilates or \(L = \{o\} \), and where \(p \geq 1 \) and \(0 \leq i < n \). Putting \(i = 0 \), \(\varphi(x_1, x_2) = x_1^p + x_2^p \) and \(1 \leq p < \infty \) in (1.11), (1.11) reduces to the well-known \(L_p \)-Brunn-Minkowski inequality established by Firey [7].

\[
(1.12) \quad V(K + p L)^{p/n} \geq V(K)^{p/n} + V(L)^{p/n},
\]

with equality if and only if \(K \) and \(L \) are dilates or \(L = \{o\} \), and where \(p > 1 \). A special case of (1.10) was recently established by Gardner, Hug and Weil [9].

\[
(1.13) \quad 1 \geq \varphi \left(\left(\frac{V(K)}{V(K + \varphi \, \varepsilon \, L)} \right)^{1/n} \cdot \left(\frac{V(L)}{V(K + \varphi \, \varepsilon \, L)} \right)^{1/n} \right),
\]

for \(\varphi \in \Phi_2 \). If \(\varphi \) is strictly convex, equality holds if and only if \(K \) and \(L \) are dilates or \(L = \{o\} \). When \(i = 0 \), (1.10) becomes to (1.12). Moreover, We prove also the Orlicz Minkowski inequality (1.4) and the Orlicz Brunn-Minkowski inequality (1.12) are equivalent, and (1.7) and (1.10) also are equivalent.

When we were about to submit our paper, we were informed that G. Xiong and D. Zou [38] had also obtained Orlicz Minowski and Brunn-Mingkowski inequalities for Orlicz mixed quermassintegrals. Please note that we use a completely different approach, although the two inequalities coincide with theirs.

In 2012, Böröczky, Lutwak, Yang, and Zhang [2] conjecture a log-Minkowski inequality for origin-symmetric convex bodies \(K \) and \(L \) in \(\mathbb{R}^n \).

\[
(1.14) \quad \int_{S^{n-1}} \frac{h(L, u)}{h(K, u)} h(K, u) dS(K, u) \geq V(K) \log \left(\frac{V(L)}{V(K)} \right).
\]

In [2], (1.14) is proved by them only when \(n = 2 \). Very recently, Gardner, Hug and Weil [9] proved a new version of (1.14) for convex bodies, not origin-symmetric convex bodies.

\[
(1.15) \quad \int_{S^{n-1}} \log \left(1 - \frac{h(L, u)}{h(K, u)} \right) h(K, u) dS(K, u) \leq V(K) \log \left(1 - \frac{V(L)^{1/n}}{V(K)^{1/n}} \right)^n,
\]

with equality if and only if \(K \) and \(L \) are dilates or \(L = \{o\} \), and where \(L \subset \text{int} \, K \). They also shown that combining (1.14) and (1.15) may get the classical Brunn-Minkowski inequality. In Section 6, we give a new log-Minkowski-type inequality

\[
(1.16) \quad \int_{S^{n-1}} \log \left(1 - \frac{h(L, u)}{h(K, u)} \right) h(K, u) dS_i(K, u) \leq W_i(K) \log \left(1 - \frac{W_i(L)^{1/(n-i)}}{W_i(K)^{1/(n-i)}} \right)^n,
\]

with equality if and only if \(K \) and \(L \) are dilates or \(L = \{o\} \). When \(i = 0 \), (1.16) becomes (1.15). We also point out a conjecture which is an extension of the log Minkowski inequality as follows.

\[
(1.17) \quad \frac{1}{n} \int_{S^{n-1}} \log \left(\frac{h(L, u)}{h(K, u)} \right) h(K, u) dS_i(K, u) \geq \log \left(\frac{W_i(L)}{W_i(K)} \right)^{1/(n-i)}.
\]

When \(i = 0 \), (1.17) becomes the log-Minkowski inequality (1.14). Combining (1.16) and (1.17) together split the following classical Brunn-Minkowski inequality for quermassintegrals (see Section 6).

\[
W_i(K + L)^{1/(n-i)} \geq W_i(K)^{1/(n-i)} + W_i(L)^{1/(n-i)},
\]
with equality if and only if K and L are dilates or $L = \{0\}$.

In 2010, the Orlicz projection body Π_φ of K (K is a convex body containing the origin in its interior) defined by Lutwak, Yang and Zhang [28]

\[h(\Pi_\varphi, u) = \inf \left\{ \lambda > 0 \mid \frac{1}{nV(K)} \int_{S^{n-1}} \varphi \left(\frac{|u \cdot v|}{\lambda h(K, v)} \right) h(K, v) dS(K, v) \leq 1 \right\}, \]

for $\varphi \in \Phi$ and $u \in S^{n-1}$. A different Orlicz version of Minkowski’s inequality (1.8) is presented in Section 7. This results from replacing the left side of (1.8) by the quantity

\[\overline{W}_{\varphi, i}(K, L) = \inf \left\{ \lambda > 0 \mid \frac{1}{nW_i(K)} \int_{S^{n-1}} \varphi \left(\frac{h(L, u)}{\lambda h(K, u)} \right) h(K, u) dS_i(K, u) \leq 1 \right\}, \]

for $\varphi \in \Phi$ and $0 \leq i < n$. We prove the following new Orlicz Minkowski type inequality.

\[\overline{W}_{\varphi, i}(K, L) \geq \left(\frac{W_i(L)}{W_i(K)} \right)^{1/(n-i)}, \]

where $\varphi \in \Phi$ and $1 \leq i < n$. If φ is strictly convex and $W_i(L) > 0$, equality holds if and only if K and L are dilates. A special version of (1.20) was recently established by Gardner, Hug and Weil [9].

\[\overline{V}_{\varphi}(K, L) \geq \left(\frac{V(L)}{V(K)} \right)^{1/n}, \]

If φ is strictly convex and $V(L) > 0$, then equality holds if and only if K and L are dilates and where

\[\overline{V}_{\varphi}(K, L) = \inf \left\{ \lambda > 0 \mid \frac{1}{nV(K)} \int_{S^{n-1}} \varphi \left(\frac{h(L, u)}{\lambda h(K, u)} \right) h(K, u) dS(K, u) \leq 1 \right\}, \]

for $\varphi \in \Phi$.

Finally, in Section 8, we show Simon’s characterization of relative spheres for the Orlicz mixed quermassintegrals.

2 Notations and preliminaries

The setting for this paper is n-dimensional Euclidean space \mathbb{R}^n. Let \mathcal{K}^n be the class of nonempty compact convex subsets of \mathbb{R}^n, let \mathcal{K}_0^n be the class of members of \mathcal{K}^n containing the origin, and let $\mathcal{K}_{\text{in}}^n$ be those sets in \mathcal{K}^n containing the origin in their interiors. A set $K \in \mathcal{K}^n$ is called a convex body if its interior is nonempty. We reserve the letter $u \in S^{n-1}$ for unit vectors, and the letter B for the unit ball centered at the origin. The surface of B is S^{n-1}. For a compact set K, we write $V(K)$ for the (n-dimensional) Lebesgue measure of K and call this the volume of K. If K is a nonempty closed (not necessarily bounded) convex set, then

\[h(K, x) = \sup \{ x \cdot y \mid y \in K \}, \]
for $x \in \mathbb{R}^n$, defines the support function of K, where $x \cdot y$ denotes the usual inner product x and y in \mathbb{R}^n. A nonempty closed convex set is uniquely determined by its support function. Support function is homogeneous of degree 1, that is,

$$h(K, rx) = rh(K, x),$$

for all $x \in \mathbb{R}^n$ and $r \geq 0$. Let d denote the Hausdorff metric on \mathcal{K}^n, i.e., for $K, L \in \mathcal{K}^n$,

$$d(K, L) = \|h(K, u) - h(L, u)\|_{\infty},$$

where $\| \cdot \|_{\infty}$ denotes the sup-norm on the space of continuous functions $C(\mathbb{S}^{n-1})$.

Throughout the paper, the standard orthonormal basis for \mathbb{R}^n will be $\{e_1, \ldots, e_n\}$. Let $\Phi_n, n \in \mathbb{N}$, denote the set of convex functions $\varphi : [0, \infty)^n \to [0, \infty)$ that are strictly increasing in each variable and satisfy $\varphi(0) = 0$ and $\varphi(e_j) = 1 > 0$, $j = 1, \ldots, n$. When $n = 1$, we shall write Φ instead of Φ_1. The left derivative and right derivative of a real-valued function f are denoted by $(f)_l'$ and $(f)_r'$, respectively.

2.1 Mixed quermassintegrals

If $K_i \in \mathcal{K}^n$ ($i = 1, 2, \ldots, r$) and λ_i ($i = 1, 2, \ldots, r$) are nonnegative real numbers, then of fundamental importance is the fact that the volume of $\sum_{i=1}^r \lambda_i K_i$ is a homogeneous polynomial in λ_i given by (see e.g. [3])

$$V(\lambda_1 K_1 + \cdots + \lambda_n K_n) = \sum_{i_1, \ldots, i_n} \lambda_{i_1} \cdots \lambda_{i_n} V_{i_1 \cdots i_n},$$

where the sum is taken over all n-tuples (i_1, \ldots, i_n) of positive integers not exceeding r. The coefficient $V_{i_1 \cdots i_n}$ depends only on the bodies K_{i_1}, \ldots, K_{i_n} and is uniquely determined by (2.1), it is called the mixed volume of K_{i_1}, \ldots, K_{i_n}, and is written as $V(K_{i_1}, \ldots, K_{i_n})$. Let $K_1 = \ldots = K_{n-i} = K$ and $K_{n-i+1} = \ldots = K_n = L$, then the mixed volume $V(K_1, \ldots, K_n)$ is written as $V(K[n-i], L[i])$. If $K_1 = \cdots = K_{n-1} = K$, $K_{n-i+1} = \cdots = K_n = B$ The mixed volumes $V_i(K[n-i], B[i])$ is written as $W_i(K)$ and call as quermassintegrals (or i-th mixed quermassintegrals) of K. We write $W_i(K, L)$ for the mixed volume $V(K[n-i-1], B[i], L[1])$ and call as mixed quermassintegrals. Aleksandrov [1] and Fenchel and Jessen [5] (also see Busemann [4] and Schneider [33]) have shown that for $K \in \mathcal{K}_{\text{comp}}^n$, and $i = 0, 1, \ldots, n-1$, there exists a regular Borel measure $S_i(K, \cdot)$ on \mathbb{S}^{n-1}, such that the mixed quermassintegrals $W_i(K, L)$ has the following representation:

$$W_i(K, L) = \frac{1}{n-i} \lim_{\varepsilon \to 0^+} \frac{W_i(K + \varepsilon L) - W_i(K)}{\varepsilon} = \frac{1}{n} \int_{\mathbb{S}^{n-1}} h(L, u)dS_i(K, u).$$

Associated with $K_1, \ldots, K_n \in \mathcal{K}^n$ is a Borel measure $S(K_1, \ldots, K_n, \cdot)$ on \mathbb{S}^{n-1}, called the mixed surface area measure of K_1, \ldots, K_n, which has the property that for each $K \in \mathcal{K}^n$ (see e.g. [8], p.353),

$$V(K_1, \ldots, K_{n-1}, K) = \frac{1}{n} \int_{\mathbb{S}^{n-1}} h(K, u)dS(K_1, \ldots, K_{n-1}, u).$$

In fact, the measure $S(K_1, \ldots, K_{n-1}, \cdot)$ can be defined by the proper that (2.3) holds for all $K \in \mathcal{K}^n$. Let $K_1 = \cdots = K_{n-i} = K$ and $K_{n-i} = \cdots = K_{n-1} = L$, then the mixed surface area measure $S(K_1, \ldots, K_{n-1}, \cdot)$ is written as $S(K[n-i], L[i], \cdot)$.

On the Orlicz-Brunn-Minkowski theory

103
When \(L = B, S(K[n-i], L[i], \cdot) \) is written as \(S_i(K, \cdot) \) and called as \(i \)-th mixed surface area measure. A fundamental inequality for mixed quermassintegrals stats that: For \(K, L \in \mathcal{K}_n \) and \(0 \leq i < n-1 \),

\[
W_i(K, L)^{n-i} \geq W_i(K)^{n-i-1}W_i(L),
\]

with equality if and only if \(K \) and \(L \) are homothetic and \(L = \{o\} \). Good general references for this material are [4] and [19].

2.2 Mixed \(p \)-quermassintegrals

Mixed quermassintegrals are, of course, the first variation of the ordinary quermassintegrals, with respect to Minkowski addition. The mixed quermassintegrals \(W_{p,0}(K, L), W_{p,1}(K, L), \ldots, W_{p,n-1}(K, L) \), as the first variation of the ordinary quermassintegrals, with respect to Firey addition: For \(K, L \in \mathcal{K}_{oo}^n \), and real \(p \geq 1 \), defined by (see e.g. [21])

\[
W_{p,i}(K, L) = \frac{1}{n-i} \lim_{\varepsilon \to 0^+} \frac{W_i(K + \varepsilon \cdot L) - W_i(K)}{\varepsilon}.
\]

The mixed \(p \)-quermassintegrals \(W_{p,i}(K, L) \), for all \(K, L \in \mathcal{K}_{oo}^n \), has the following integral representation:

\[
W_{p,i}(K, L) = \frac{1}{n} \int_{S^{n-1}} h(L, u)^p dS_{p,i}(K, u),
\]

where \(S_{p,i}(K, \cdot) \) denotes the Boel measure on \(S^{n-1} \). The measure \(S_{p,i}(K, \cdot) \) is absolutely continuous with respect to \(S_i(K, \cdot) \), and has Radon-Nikodym derivative

\[
\frac{dS_{p,i}(K, \cdot)}{dS_i(K, \cdot)} = h(K, \cdot)^{1-p},
\]

where \(S_i(K, \cdot) \) is a regular Boel measure on \(S^{n-1} \). The measure \(S^{n-1}(K, \cdot) \) is independent of the body \(K \), and is just ordinary Lebesgue measure, \(S \), on \(S^{n-1} \). \(S_i(B, \cdot) \) denotes the \(i \)-th surface area measure of the unit ball in \(\mathbb{R}^n \). In fact, \(S_i(B, \cdot) = S \) for all \(i \). The surface area measure \(S_0(K, \cdot) \) just is \(S(K, \cdot) \). When \(i = 0 \), \(S_{p,0}(K, \cdot) \) is written as \(S_p(K, \cdot) \) (see [25, [26]). A fundamental inequality for mixed \(p \)-quermassintegrals stats that: For \(K, L \in \mathcal{K}_{oo}^n, p > 1 \) and \(0 \leq i < n-1 \),

\[
W_{p,i}(K, L)^{n-i} \geq W_i(K)^{n-i-1}W_i(L)^p,
\]

with equality if and only if \(K \) and \(L \) are homothetic. \(L_p \)-Brun-Minkowski inequality for quermassintegrals established by Lutwak [21]. If \(K \in \mathcal{K}_{oo}^n, L \in \mathcal{K}_o^n \) and \(p \geq 1 \) and \(0 \leq i \leq n \), then

\[
W_i(K +_p L)^{p/(n-i)} \geq W_i(K)^{p/(n-i)} + W_i(L)^{p/(n-i)},
\]

with equality if and only if \(K \) and \(L \) are dilates or \(L = \{o\} \). Obviously, putting \(i = 0 \) in (2.6), the mixed \(p \)-quermassintegrals \(W_{p,1}(K, L) \) become the well-known \(L_p \)-mixed volume \(V_p(K, L) \), defined by (see e.g. [25])

\[
V_p(K, L) = \frac{1}{n} \int_{S^{n-1}} h(L, u)^p dS_p(K, u).
\]
2.3 The Orlicz mixed volume

For $\varphi \in \Phi$, $K \in K^n_{\infty}$, and $L \in K^n_{\infty}$, Gardner, Hug and Weil [9] defined the Orlicz mixed volumes, $V_\varphi(K, L)$ by

$$V_\varphi(K, L) = \frac{1}{n} \int_{S^{n-1}} \varphi \left(\frac{h(L, u)}{h(K, u)} \right) h(K, u) dS(K, u).$$

They obtained the Orlicz-Minkowski inequality.

$$V_\varphi(K, L) \geq V(K) \cdot \varphi \left(\left(\frac{V(L)}{V(K)} \right)^{1/n} \right),$$

for all $K \in K^n_{\infty}$, $L \in K^n_{\infty}$ and $\varphi \geq 2$. If φ is strictly convex, equality holds if and only if K and L are dilates or $L = \{a\}$.

Orlicz mixed quermassintegrals is defined in Section 3, by

$$W_\varphi;i(K, L) =: \frac{1}{n} \int_{S^{n-1}} \varphi \left(\frac{h(L, u)}{h(K, u)} \right) h(K, u) dS_i(K, u),$$

for all $K \in K^n_{\infty}$, $L \in K^n_{\infty}$, $\varphi \geq 2$ and $0 < i < n$. Obviously, when $\varphi(t) = t^p$ and $p \geq 1$, Orlicz mixed quermassintegrals reduces to the mixed p-quermassintegrals $W_{p,i}(K, L)$ defined in (2.6). When $i = 0$, (2.13) reduces to (2.11).

2.4 Orlicz addition

Let $m \geq 2$, $\varphi \in \Phi_m$, $K_j \in K^n_{\infty}$ and $j = 1, \ldots, m$, we define the Orlicz addition of K_1, \ldots, K_m, denoted by $+_{\varphi}(K_1, \ldots, K_m)$, is defined by

$$h(+_{\varphi}(K_1, \ldots, K_m), x) = \inf \left\{ \lambda > 0 \mid \varphi \left(\frac{h(K_1, x)}{\lambda}, \ldots, \frac{h(K_m, x)}{\lambda} \right) \leq 1 \right\},$$

for $x \in \mathbb{R}^n$. Equivalently, the Orlicz addition $+_{\varphi}(K_1, \ldots, K_m)$ can be defined implicitly (and uniquely) by

$$\varphi \left(\frac{h(K_1, x)}{h(+_{\varphi}(K_1, \ldots, K_m), x)}, \ldots, \frac{h(K_m, x)}{h(+_{\varphi}(K_1, \ldots, K_m), x)} \right) = 1,$$

for all $x \in \mathbb{R}^n$. An important special case is obtained when

$$\varphi(x_1, \ldots, x_m) = \sum_{j=1}^{m} \varphi_j(x_j),$$

for some fixed $\varphi_j \in \Phi$ such that $\varphi_1(1) = \cdots = \varphi_m(1) = 1$. We then write $+_{\varphi}(K_1, \ldots, K_m) = K_1 +_{\varphi} \cdots +_{\varphi} K_m$. This means that $K_1 +_{\varphi} \cdots +_{\varphi} K_m$ is defined either by

$$h(K_1 +_{\varphi} \cdots +_{\varphi} K_m, u) = \sup \left\{ \lambda > 0 \mid \sum_{j=1}^{m} \varphi_j \left(\frac{h(K_j, x)}{\lambda} \right) \leq 1 \right\},$$
for all $x \in \mathbb{R}^n$, or by the corresponding special case of (2.15).

For real $p \geq 1$, $K, L \in K_0^n$, and $\alpha, \beta \geq 0$ (not both zero), the Firey linear combination $\alpha \cdot K + \beta \cdot L \in K_0^n$ can be defined by (see [6] and [7])

$$h(\alpha \cdot K + \beta \cdot L, \cdot)^p = \alpha h(K, \cdot)^p + \beta h(L, \cdot)^p.$$ Obviously, Firey and Minkowski scalar multiplications are related by $\alpha \cdot K = \alpha^{1/p} K$.

In [9], Gardner, Hug and Weil define the Orlicz linear combination $+_{\varphi}(K, L, \alpha, \beta)$ for $K, L \in K_0^n$ and $\alpha, \beta \geq 0$, defined by

$$h(\varphi(K, L, \alpha, \beta), x) = \frac{h(K, x)}{h(+_{\varphi}(K, L, \alpha, \beta), x)},$$ if $\alpha h(K, x) + \beta h(L, x) > 0$, and by $h(+_{\varphi}(K, L, \alpha, \beta), x) = 0$ if $\alpha h(K, x) + \beta h(L, x) = 0$, for all $x \in \mathbb{R}^n$. It is easy to verify that when $\varphi_1(t) = \varphi_2(t) = t^p$, $p \geq 1$, the Orlicz linear combination $+_{\varphi}(K, L, \alpha, \beta)$ equals the Firey combination $\alpha \cdot K + \beta \cdot L$. Henceforth we shall write $K +_{\varphi, \varepsilon} L$ instead of $+_{\varphi}(K, L, 1, \varepsilon)$, for $\varepsilon \geq 0$, and assume throughout that this is defined by (2.17), where $\alpha = 1, \beta = \varepsilon$, and $\varphi_1, \varphi_2 \in \Phi$.

3 Orlicz mixed quermassintegrals

In order to define a new concept: Orlicz mixed quermassintegrals, we need Lemmas 3.1-3.4 and Theorem 3.5.

Lemma 3.1. ([9]) If $\varphi \in \Phi_m$, then Orlicz addition $+_{\varphi} : (K_0^n)^m \rightarrow K_0^n$ is continuous, GL(n) covariant, monotonic, projection covariant and has the identity property.

Lemma 3.2. ([9]) If $K, L \in K_0^n$, then

$$K +_{\varphi, \varepsilon} L \rightarrow K,$$

in the Hausdorff metric as $\varepsilon \rightarrow 0^+$.

Lemma 3.3. If $K, L \in K_0^n$ and $0 \leq i < n$, Then

$$\lim_{\varepsilon \rightarrow 0^+} \frac{W_i(K +_{\varphi, \varepsilon} L) - W_i(K)}{\varepsilon} = \frac{n - i}{n} \int_{S^{n-1}} \lim_{\varepsilon \rightarrow 0^+} \frac{h(K +_{\varphi, \varepsilon} L, u) - h(K, u)}{\varepsilon} dS_i(K, u),$$

where, $\lim_{\varepsilon \rightarrow 0^+} \frac{h(K +_{\varphi, \varepsilon} L, u) - h(K, u)}{\varepsilon}$ uniformly for $u \in S^{n-1}$.

Proof. For brevity, we temporarily write $K_{\varepsilon} = K +_{\varphi, \varepsilon} L$. Starting with the decomposition

$$W_i(K_{\varepsilon}) - W_i(K) = \sum_{j=0}^{n-1} W_i(K_{\varepsilon}[j + 1], K[n - i - j - 1]) - W_i(K_{\varepsilon}[j], K[n - i - j]).$$

Notice that

$$\lim_{\varepsilon \rightarrow 0^+} \frac{W_i(K_{\varepsilon}[j + 1], K[n - i - j - 1]) - W_i(K_{\varepsilon}[j], K[n - i - j])}{\varepsilon}$$
\[
\begin{align*}
&= \frac{1}{n} \int_{S^{n-1}} \frac{h(K_{\varepsilon}, u) - h(K, u)}{\varepsilon} dS_i(K_{\varepsilon}[j], K[n - i - j - 1], u) \\
&= \frac{1}{n} \int_{S^{n-1}} \left(\frac{h(K_{\varepsilon}, u) - h(K, u)}{\varepsilon} - \lim_{\varepsilon \to 0^+} \frac{h(K + \varphi_{\varepsilon} L, u) - h(K, u)}{\varepsilon} \right) \\
&\quad \times dS_i(K_{\varepsilon}[j], K[n - i - j - 1], u) \\
&\quad + \frac{1}{n} \int_{S^{n-1}} \lim_{\varepsilon \to 0^+} \frac{h(K + \varphi_{\varepsilon} L, u) - h(K, u)}{\varepsilon} dS_i(K_{\varepsilon}[j], K[n - i - j - 1], u).
\end{align*}
\]

By assumption, the integrand in (3.3) converges uniformly to zero for \(u \in S^{n-1} \).
Since \(K_{\varepsilon} \to K \) as \(\varepsilon \to 0^+ \), by Lemma 3.2, and the \(i \)-th mixed surface area measures \(S_i(K_{\varepsilon}[j], K[n - i - j - 1]) \) are uniformly bounded for \(\varepsilon \in (0, 1] \), the first integral in the previous sum converges to zero. Noting that \(S_i(K_{\varepsilon}[j], K[n - i - j - 1]) \to S_i(K, u) \) weakly as \(\varepsilon \to 0^+ \). Hence

\[
\lim_{\varepsilon \to 0^+} \frac{W_i(K + \varphi_{\varepsilon} L) - W_i(K)}{\varepsilon} = \frac{1}{n} \sum_{j=0}^{n-1} \frac{1}{n} \int_{S^{n-1}} \lim_{\varepsilon \to 0^+} \frac{h(K + \varphi_{\varepsilon} L, u) - h(K, u)}{\varepsilon} \\
\times dS_i(K_{\varepsilon}[j], K[n - i - j - 1], u) \\
= \frac{n}{n} \int_{S^{n-1}} \lim_{\varepsilon \to 0^+} \frac{h(K + \varphi_{\varepsilon} L, u) - h(K, u)}{\varepsilon} dS_i(K, u).
\]

Lemma 3.4. For \(\varepsilon > 0 \) and \(u \in S^{n-1} \), let \(h_{\varepsilon} = h(K + \varphi_{\varepsilon} L, u) \). If \(K \in K^n_{\infty} \) and \(L \in K^n_0 \), then

\[
(3.4) \quad \frac{dh_{\varepsilon}}{d\varepsilon} = -h(K, u) \frac{d\varphi_{\varepsilon}^{-1}(y)}{dy} \varphi_{\varepsilon} \left(\frac{h(L, u)}{h_{\varepsilon}} \right) \\
\left(\varphi_{\varepsilon}^{-1} \left(1 - \varepsilon \varphi_{\varepsilon} \left(\frac{h(L, u)}{h_{\varepsilon}} \right) \right) \right)^2 + \varepsilon \cdot \frac{h(L, u)h(L_n, u)}{h_{\varepsilon}^2} \frac{d\varphi_{\varepsilon}^{-1}(y)}{dy} \frac{d\varphi_{\varepsilon}(z)}{dz},
\]

where

\[
y = 1 - \varepsilon \varphi_{\varepsilon} \left(\frac{h(L, u)}{h_{\varepsilon}} \right),
\]

and

\[
z = \frac{h(L, u)}{h_{\varepsilon}}.
\]

Proof. Suppose \(\varepsilon > 0 \), \(L \in K^n_{\infty}, K \in K^n_{\infty} \) and \(u \in S^{n-1} \), and notice that

\[
h_{\varepsilon} = h(K + \varphi_{\varepsilon} L, u),
\]

we have

\[
\frac{h(K, u)}{h_{\varepsilon}} = \varphi_{\varepsilon}^{-1} \left(1 - \varepsilon \varphi_{\varepsilon} \left(\frac{h(L, u)}{h_{\varepsilon}} \right) \right).
\]
On the other hand

\[
\frac{dh_\varepsilon}{d\varepsilon} = \frac{d}{d\varepsilon} \left(\frac{h(K, u)}{\varphi_1^{-1} \left(1 - \varepsilon \varphi_2 \left(\frac{h(L, u)}{h_\varepsilon} \right) \right)} \right)
\]

\[
= \frac{h(K, u)}{h_\varepsilon} \frac{d\varphi_1^{-1}(y)}{dy} \left[\varphi_2 \left(\frac{h(L, u)}{h_\varepsilon} \right) - \varepsilon \frac{d\varphi_2(z) h(L, u) dh_\varepsilon}{dz} \right]
\]

\[
\left(\varphi_1^{-1} \left(1 - \varepsilon \varphi_2 \left(\frac{h(L, u)}{h_\varepsilon} \right) \right) \right)^2
\]

where

\[
y = 1 - \varepsilon \varphi_2 \left(\frac{h(L, u)}{h_\varepsilon} \right),
\]

and

\[
z = \frac{h(L, u)}{h_\varepsilon}.
\]

By simplifying the equation from above, (3.4) easily follows. □

Theorem 3.5. Let \(\varphi \in \Phi_2 \), and \(\varphi_1, \varphi_2 \in \Phi \). If \(K \in \mathcal{K}_o^n, L \in \mathcal{K}_o^n \) and \(1 \leq i \leq n \), then

\[
(3.5) \quad \left(\frac{\varphi_1}{\varphi_2} \right)_i(1) \lim_{\varepsilon \to 0^+} \frac{W_i(K + \varphi, \varepsilon L) - W_i(K)}{\varepsilon} = \frac{1}{n} \int_{S_{n-1}} \varphi_2 \left(\frac{h(L, u)}{h(K, u)} \right) h(K, u) dS_i(K, u).
\]

Proof. From Lemma 3.3, we obtain

\[
\lim_{\varepsilon \to 0^+} \frac{W_i(K + \varphi, \varepsilon L) - W_i(K)}{\varepsilon} = \frac{n - i}{n} \int_{S_{n-1}} \lim_{\varepsilon \to 0^+} \frac{h(K + \varphi, \varepsilon L, u) - h(K, u)}{\varepsilon} dS_i(K, u)
\]

\[
= \frac{n - i}{n} \lim_{\varepsilon \to 0^+} \int_{S_{n-1}} \frac{dh_\varepsilon}{d\varepsilon} dS_i(K; u).
\]

From Lemmas 3.1-3.2 and Lemma 3.4, and noting that \(y \to 1^- \) as \(\varepsilon \to 0^+ \), we have

\[
\frac{d\varphi_1^{-1}(y)}{d\varepsilon} = \lim_{y \to 1^-} \frac{\varphi_1^{-1}(y) - \varphi_1^{-1}(1)}{y - 1} = \frac{1}{(\varphi_1)_i'(1)}
\]

the equation (3.5) easily follows. □

The theorem plays a central role in our deriving new concept of the Orlicz mixed quermassintegrals. Here, we give the another proof.

Proof. From the hypotheses, we have for \(\varepsilon > 0 \)

\[
h(K + \varphi, \varepsilon L, u) = \frac{h(K, u)}{\varphi_1^{-1} \left(1 - \varepsilon \varphi_2 \left(\frac{h(L, u)}{h(K + \varphi, \varepsilon L, u)} \right) \right)}.
\]
Hence

\[
(3.6) \quad \lim_{\varepsilon \to 0^+} \frac{h(K + \varphi, \varepsilon L, u) - h(K, u)}{\varepsilon} = \lim_{\varepsilon \to 0^+} \frac{h(K, u)}{\varphi_1^{-1} \left(1 - \varepsilon \varphi_2 \left(\frac{h(L, u)}{h(K + \varphi, \varepsilon L, u)} \right) \right)} - h(K, u)
\]

\[
= \lim_{\varepsilon \to 0^+} \frac{h(K, u) \varphi_2 \left(\frac{h(L, u)}{h(K + \varphi, \varepsilon L, u)} \right)}{\varphi_1^{-1} \left(1 - \varepsilon \varphi_2 \left(\frac{h(L, u)}{h(K + \varphi, \varepsilon L, u)} \right) \right)} \lim_{y \to 1^-} \frac{\varphi_1^{-1}(y) - \varphi_1^{-1}(1)}{y - 1},
\]

where

\[
y = 1 - \varepsilon \varphi_2 \left(\frac{h(L, u)}{h(K + \varphi, \varepsilon L, u)} \right),
\]

and note that \(y \to 1^- \) as \(\varepsilon \to 0^+ \). Notice that

\[
\lim_{y \to 1^-} \frac{\varphi_1^{-1}(y) - \varphi_1^{-1}(1)}{y - 1} = \frac{1}{(\varphi_1)_1'(1)},
\]

and from (2.2),(3.6) and Lemmas 3.1-3.2, (3.5) easy follows.

Denoting by \(W_{\varphi, i}(K, L) \), for any \(\varphi \in \Phi \) and \(1 \leq i < n \), the integral on the right-hand side of (3.5) with \(\varphi_2 \) replaced by \(\varphi \), we see that either side of the equation (3.5) is equal to \(W_{\varphi, i}(K, L) \) and therefore this new Orlicz mixed volume \(W_{\varphi, i}(K, L) \) (Orlicz mixed quermassintegrals) has been born.

Definition 3.1. (Orlicz mixed quermassintegrals) For \(\varphi \in \Phi \), Orlicz mixed quermassintegrals, \(W_{\varphi, i}(K, L) \), for \(0 \leq i < n \), defined by

\[
W_{\varphi, i}(K, L) = \frac{1}{n} \int_{S^{n-1}} \varphi \left(\frac{h(L, u)}{h(K, u)} \right) h(K, u) dS_i(K, u),
\]

for all \(K \in K_0^n \), \(L \in K_0^n \).

Remark 3.2. Let \(\varphi_1(t) = t + p \), \(p \geq 1 \) in (3.5), the Orlicz sum \(K + \varphi, L \) reduces to the \(L_p \) addition \(K + \varphi, L \), and the Orlicz mixed quermassintegrals \(W_{\varphi, i}(K, L) \) become the well-known mixed \(p \)-quermassintegrals \(W_{p, i}(K, L) \). Obviously, when \(i = 0 \), \(W_{\varphi, i}(K, L) \) reduces to Orlicz mixed volumes \(V_{\varphi}(K, L) \) defined by Gardner, Hug and Weil [9].

Theorem 3.6. If \(\varphi_1, \varphi_2 \in \Phi \), \(\varphi \in \Phi_2 \) and \(K \in K_0^n \), \(L \in K_0^n \), and \(0 \leq i < n \), then

\[
W_{\varphi, i}(K, L) = \frac{(\varphi_1)_i'(1)}{n - i} \lim_{\varepsilon \to 0^+} \frac{W_{i}(K + \varphi, \varepsilon L) - W_{i}(K)}{\varepsilon},
\]

Proof. This follows immediately from Theorem 3.5 and (3.7).
4 Orlicz-Minkowski type inequality

In the Section, we need define a Borel measure in \(S^{n-1} \), \(\tilde{W}_{n,i}(K,v) \), called as \(i \)-th normalized cone measure.

Definition 4.1. If \(K \in K^n_\infty \), \(i \)-th normalized cone measure, \(\tilde{W}_{n,i}(K,v) \), defined by

\[
dW_{n,i}(K,v) = \frac{h(K,v)}{nW_i(K)}dS_i(K,v).
\]

When \(i = 0 \), \(W_{n,i}(K,v) \) becomes to the well-known normalized cone measure \(V_n(K,v) \), by

\[
\frac{1}{nW_i(K)}\int_{S^{n-1}} \varphi \left(\frac{h(L,u)}{h(K,u)} \right) h(K,u)dS_i(K,u) \geq \varphi \left(\frac{W_i(L)}{W_i(K)} \right)^{1/(n-i)}.
\]

Lemma 4.1. (Jensen’s inequality) Suppose that \(\mu \) is a probability measure on a space \(X \) and \(g : X \to I \subset \mathbb{R} \) is a \(\mu \)-integrable function, where \(I \) is a possibly infinite interval. If \(\varphi : I \to \mathbb{R} \) is a convex function, then

\[
\int_X \varphi(g(x))d\mu(x) \geq \varphi \left(\int_X g(x)d\mu(x) \right).
\]

If \(\varphi \) is strictly convex, equality holds if and only if \(g(x) \) is constant for \(\mu \)-almost all \(x \in X \) (see [16]).

Lemma 4.2. Let \(0 < a \leq \infty \) be an extended real number, and let \(I = [0,a) \) be a possibly infinite interval. Suppose that \(\varphi : I \to [0,\infty) \) is convex with \(\varphi(0) = 0 \). If \(K \in K^n_\infty \) and \(L \in K^n_o \) are such that \(L \subset \text{int}(aK) \), then

\[
\frac{1}{nW_i(K)}\int_{S^{n-1}} \varphi \left(\frac{h(L,u)}{h(K,u)} \right) h(K,u)dS_i(K,u) \geq \varphi \left(\frac{W_i(L)}{W_i(K)} \right)^{1/(n-i)}.
\]

If \(\varphi \) is strictly convex, equality holds if and only if \(K \) and \(L \) are dilates or \(L = \{0\} \).

Proof. In view of \(L \subset \text{int}(aK) \), so \(0 \leq \frac{h(L,u)}{h(K,u)} < a \) for all \(u \in S^{n-1} \). By (4.1) and note that (2.2) with \(K = L \), it follows the \(i \)-th normalized cone measure \(\tilde{W}_{n,i}(K,u) \) is a probability measure on \(S^{n-1} \). Hence by using Jensen’s inequality (4.3), the Minkowski’s inequality (2.4), and the fact that \(\varphi \) is increasing, to obtain

\[
\frac{1}{nW_i(K)}\int_{S^{n-1}} \varphi \left(\frac{h(L,u)}{h(K,u)} \right) h(K,u)dS_i(K,u) = \int_{S^{n-1}} \varphi \left(\frac{h(L,u)}{h(K,u)} \right) d\tilde{W}_{n,i}(K,u)
\]

\[
\geq \varphi \left(\frac{W_i(L)}{W_i(K)} \right)^{1/(n-i)}.
\]
\begin{align}
\varphi \left(\frac{W_i(L)}{W_i(K)} \right)^{1/(n-i)}.
\end{align}

In the following, we discuss the equal condition of (4.4). Suppose the equality holds in (4.4) and \(\varphi \) is strictly convex, so that \(\varphi > 0 \) on \((0, a)\). Moreover, notice the injectivity of \(\varphi \), we have equality in Minkowski inequality (2.4), so there are \(r \geq 0 \) and \(x \in \mathbb{R}^n \) such that \(L = rK + x \) and hence
\[
h(L, u) = rh(K, u) + x \cdot u
\]
for all \(u \in S^{n-1} \). Since equality must hold in Jensen’s inequality (4.3) as well, when \(\varphi \) is strictly convex we can conclude from the equality condition for Jensen’s inequality that
\[
\frac{1}{nW_i(K)} \int_{S^{n-1}} \frac{h(L, u)}{h(K, u)} h(K, u) dS_i(K, u) = \frac{h(L, v)}{h(K, v)}
\]
for \(S_i(K, \cdot) \)-almost all \(v \in S^{n-1} \). Hence
\[
\frac{1}{nW_i(K)} \int_{S^{n-1}} \left(r + \frac{x \cdot u}{h(K, u)} \right) h(K, u) dS_i(K, u) = r + \frac{x \cdot v}{h(K, v)}
\]
for \(S_i(K, \cdot) \)-almost all \(v \in S^{n-1} \). From this and the fact that the centroid of \(S_i(K, \cdot) \) is at the origin, we get
\[
0 = x \cdot \left(\frac{1}{nW_i(K)} \int_{S^{n-1}} u dS_i(K, u) \right) = \frac{1}{nW_i(K)} \int_{S^{n-1}} x \cdot u dS_i(K, u) = \frac{x \cdot v}{h(K, v)},
\]
that is, \(x \cdot v = 0 \), for \(S_i(K, \cdot) \)-almost all \(v \in S^{n-1} \). Hence \(x = 0 \), namely \(L = rK \).

Theorem 4.3. Let \(\varphi \in \Phi \). If \(K \in \mathcal{K}^n_\infty \), \(L \in \mathcal{K}^n_0 \) and \(0 \leq i < n \), then
\[
W_{\varphi, i}(K, L) \geq W_i(K) \cdot \varphi \left(\frac{W_i(L)}{W_i(K)} \right)^{1/(n-i)}.
\]

If \(\varphi \) is strictly convex, equality holds if and only if \(K \) and \(L \) are dilates or \(L = \{0\} \).

Proof. This follows immediately from (3.7) and Lemma 4.2, with \(a = \infty \).

Corollary 4.4. ([21]) If \(K \in \mathcal{K}^n_\infty \) and \(L \in \mathcal{K}^n_\infty \), and \(p > 1 \) and \(0 \leq i < n \), then
\[
W_{p,i}(K, L)^{n-i} \geq W_i(K)^{n-i} p W_i(L)^p,
\]
with equality if and only if \(K \) and \(L \) are dilates or \(L = \{0\} \).

Proof. This follows immediately from (4.7) with \(\varphi(t) = t^p \) and \(p > 1 \).

Remark 4.2. When \(a = \infty \), putting \(\varphi(t) = e^t - 1 \) in (4.4), we obtain
\[
\log \int_{S^{n-1}} \exp \left(\frac{h(L, u)}{h(K, u)} \right) dW_{n,i}(K, u) \geq \left(\frac{W_i(L)}{W_i(K)} \right)^{1/(n-i)}.
\]
Similarly, L_p-Minkowski inequality (1.8) can be written as

$$
(4.9) \quad \left(\int_{S^{n-1}} \left(\frac{h(L, u)}{h(K, u)} \right)^p \, dW_{n,i}(K, u) \right)^{1/p} \geq \left(\frac{W_i(K)}{W_i(L)} \right)^{1/(n-i)}.
$$

When $p = 1$, (4.9) becomes to a new form of the Minkowski inequality (2.4). The left side of (4.9) is just the pth mean of the function $h(L, u)/h(K, u)$ with respect to $W_{n,i}(K, \cdot)$. Notice that pth means increase with $p > 1$, so we find that the Minkowski inequality (2.4) implies L_p-Minkowski inequality (2.8).

5 Orlicz-Brunn-Minkowski type inequality

In this section, we establish the Orlicz Brunn-Minkowski inequality for Orlicz mixed quermassintegrals.

Theorem 5.1. Let $\varphi \in \Phi_2$. If $K \in \mathcal{K}_0^n$, $L \in \mathcal{K}_0^n$ and $1 \leq i < n$, then

$$
(5.1) \quad 1 \geq \varphi \left(\frac{W_i(K)^{1/(n-i)}}{W_i(K + \varphi L)^{1/(n-i)}}, \frac{W_i(L)^{1/(n-i)}}{W_i(K + \varphi L)^{1/(n-i)}} \right).
$$

If φ is strictly convex, equality holds if and only if K and L are dilates of $L = \{o\}$.

Proof. From the hypotheses and Theorem 4.3, we obtain

$$
(5.2) \quad W_i(K + \varphi L) = \frac{1}{n} \int_{S^{n-1}} \varphi \left(\frac{h(K, u)}{h(K + \varphi L, u)} \right) h(K + \varphi L, u) \, dS_i(K + \varphi L, u)
$$

$$
= \frac{1}{n} \int_{S^{n-1}} \varphi_1 \left(\frac{h(K, u)}{h(K + \varphi L, u)} \right) + \varphi_2 \left(\frac{h(L, u)}{h(K + \varphi L, u)} \right) h(K + \varphi L, u) \, dS_i(K + \varphi L, u)
$$

$$
= W_{\varphi_1,i}(K + \varphi L, K) + W_{\varphi_2,i}(K + \varphi L, L)
$$

$$
\geq W_i(K + \varphi L) \varphi \left(\frac{W_i(K)^{1/(n-i)}}{W_i(K + \varphi L)^{1/(n-i)}}, \frac{W_i(L)^{1/(n-i)}}{W_i(K + \varphi L)^{1/(n-i)}} \right).
$$

This is just (5.1).

If equality holds in (5.2), then in (5.2), with K, L and φ replaced by $K + \varphi L$, K and φ_1 (and by $K + \varphi L$, L and φ_2), respectively. So if φ is strictly convex, then φ_1 and φ_2 are also, so both K and L are multiples of $K + \varphi L$, and hence are dilates of each other or $L = \{o\}$. \hfill \square

Corollary 5.2. ([21]) If $p > 1$, $K \in \mathcal{K}_0^n$, $L \in \mathcal{K}_0^n$, while $0 \leq i < n$, then

$$
(5.3) \quad W_i(K + p L)^{p/(n-i)} \geq W_i(K)^{p/(n-i)} + W_i(L)^{p/(n-i)},
$$

with equality if and only if K and L are dilates of $L = \{o\}$.

Proof. The result follows immediately from Theorem 5.1 with $\varphi(x_1, x_2) = x_1^p + x_2^p$ and $p > 1$. \hfill \square
Theorem 5.3. Orlicz Brunn-Minkowski inequality for Orlicz mixed quermassintegrals implies Orlicz Minkowski inequality for Orlicz mixed quermassintegrals.

Proof. Since \(\varphi_1 \) is increasing, so \(\varphi_1^{-1} \) is also increasing and hence from (5.1), we obtain for \(\varepsilon > 0 \)

\[
W_i(K + \varphi, L) \geq \left(\frac{W_i(K)}{\varphi_1^{-1} \left(1 - \varepsilon \varphi_2 \left(\left(\frac{W_i(L)}{W_i(K + \varphi, L)} \right)^{1/(n-i)} \right) \right) \right)^{n-i}.
\]

From Theorem 3.6, we obtain

\[
W_{\varphi_2,i}(K, L) \geq \frac{(\varphi_1)'(1)}{n-i} W_i(K) \times \lim_{\varepsilon \to 0^+} \frac{\left(\varphi_1^{-1} \left(1 - \varepsilon \varphi_2 \left(\left(\frac{W_i(L)}{W_i(K + \varphi, L)} \right)^{1/(n-i)} \right) \right) \right)^{n-i} - W_i(K)}{\varepsilon}
\]

\[
= (\varphi_1)'(1) \lim_{\varepsilon \to 0^+} \frac{W_i(K)}{\left(\varphi_1^{-1} \left(1 - \varepsilon \varphi_2 \left(\left(\frac{W_i(L)}{W_i(K + \varphi, L)} \right)^{1/(n-i)} \right) \right) \right)^{2(n-i)}} \times \left(\frac{W_i(L)}{W_i(K + \varphi, L)} \right)^{1/(n-i)} \lim_{z \to 1^-} \frac{\varphi_1^{-1}(z) - \varphi_1^{-1}(1)}{z - 1},
\]

where

\[
z = 1 - \varepsilon \varphi_2 \left(\left(\frac{W_i(L)}{W_i(K + \varphi, L)} \right)^{1/(n-i)} \right),
\]

and note that \(z \to 1^- \) as \(\varepsilon \to 0^+ \). On the other hand, in view of

\[
\lim_{z \to 0^+} \frac{\varphi_1^{-1}(z) - \varphi_1^{-1}(1)}{z - 1} = \frac{1}{(\varphi_1)'(1)},
\]

and from Lemma 3.2. Hence

(5.4) \(W_{\varphi_2,i}(K, L) \geq W_i(K) \varphi_2 \left(\left(\frac{W_i(L)}{W_i(K)} \right)^{1/(n-i)} \right). \)

Replace \(\varphi_2 \) by \(\varphi \), this yields the Orlicz Minkowski inequality in (4.7). The equality condition follows immediately from the equality of Orlicz Brunn-Minkowski inequality for Orlicz mixed quermassintegrals. \(\square \)
From the proof of Theorem 5.1, we may see that Orlicz Minkowski inequality for Orlicz mixed quermassintegrals implies also Orlicz Brunn-Minkowski inequality for Orlicz mixed quermassintegrals, and this combines Theorem 5.3, we found that

Theorem 5.4. Orlicz Brunn-Minkowski inequality for Orlicz mixed quermassintegrals is equivalent to Orlicz Minkowski inequality for Orlicz mixed quermassintegrals. Namely: Let \(\varphi_2 \in \Phi \) and \(\varphi \in \Phi_2 \). If \(K \in \mathcal{K}^n_{\infty}, L \in \mathcal{K}^n_{\infty} \) and \(1 \leq i < n \), then

\[
W_{\varphi_2, i}(K, L) \geq W_i(K) \varphi_2 \left(\frac{W_i(L)}{W_i(K)} \right)^{1/(n-i)}
\]

\[
\Leftrightarrow 1 \geq \varphi \left(\frac{W_i(K)^{1/(n-i)}}{W_i(K+\varphi L)^{1/(n-i)}}, \frac{W_i(L)^{1/(n-i)}}{W_i(K+\varphi L)^{1/(n-i)}} \right).
\]

If \(\varphi \) is strictly convex, equality holds if and only if \(K \) and \(L \) are dilates or \(L = \{0\} \).

Corollary 5.5. Orlicz dual Brunn-Minkowski inequality is equivalent to Orlicz dual Minkowski inequality. Namely: Let \(\varphi_2 \in \Phi \) and \(\varphi \in \Phi_2 \). If \(K \in \mathcal{K}^n_{\infty} \) and \(L \in \mathcal{K}^n_{\infty} \), then

\[
V_{\varphi_2}(K, L) \geq V(K) \varphi_2 \left(\frac{V(L)}{V(K)} \right)^{1/n} \Leftrightarrow 1 \geq \varphi \left(\frac{V(K)^{1/n}}{V(K+\varphi L)^{1/n}}, \frac{V(L)^{1/n}}{V(K+\varphi L)^{1/n}} \right).
\]

If \(\varphi \) is strictly convex, equality holds if and only if \(K \) and \(L \) are dilates or \(L = \{0\} \).

Proof. The result follows immediately from Theorem 5.4 with \(i = 0 \). \(\square \)

6 The log-Minkowski type inequality

Assume that \(K, L \in \mathcal{K}^n_{\infty} \), then the log Minkowski combination, \((1 - \lambda) \cdot K + \lambda \cdot L \), is defined by

\[
(1 - \lambda) \cdot K + \lambda \cdot L = \bigcap_{u \in \mathbb{S}^{n-1}} \{ x \in \mathbb{R}^n \mid x \cdot u \leq h(K, u)^{1-\lambda}h(L, u)^{\lambda} \},
\]

for all real \(\lambda \in [0, 1] \). Böröczky, Lutwak, Yang, and Zhang [2] conjecture that for origin-symmetric convex bodies \(K \) and \(L \) in \(\mathbb{R}^n \) and \(0 \leq \lambda \leq 1 \),

\[
V((1 - \lambda) \cdot K + \lambda \cdot L) \geq V(K)^{1-\lambda}V(L)^{\lambda}.
\]

In [2], they proved (6.1) only when \(n = 2 \) and \(K, L \) are origin-symmetric convex bodies, and note that while it is not true for general convex bodies. Moreover, they also shown that (6.1), for all \(n \), is equivalent to the following log-Minkowski inequality

\[
\int_{\mathbb{S}^{n-1}} \log \left(\frac{h(L, u)}{h(K, u)} \right) dV_n(K, v) \geq \frac{1}{n} \log \left(\frac{V(L)}{V(K)} \right),
\]

where \(V_n(K, \cdot) \) is the normalized cone measure for \(K \). In fact, replacing \(K \) and \(L \) by \(K + L \) and \(K \), respectively, (6.2) becomes to the following

\[
\int_{\mathbb{S}^{n-1}} \log \left(\frac{h(K, u)}{h(K + L, u)} \right) dV_n(K + L, v) \geq \log \left(\frac{V(K)}{V(K + L)} \right)^{1/n}.
\]
In [9], Gardner, Hug and Weil gave a new version of (6.3) for the nonempty compact convex subsets K and L, not origin-symmetric convex bodies, as follows. If $K \in \mathcal{K}_{oo}^n$ and $L \in \mathcal{K}_{oo}^n$, then

$$\log \left(\frac{W_i(K)_{1/(n-1)} - W_i(L)_{1/(n-1)}}{W_i(K)_{1/(n-1)}} \right) \geq \int_{S_{n-1}} \log \left(\frac{h(K, u)}{h(K + L, u)} \right) dW_{n,i}(K, u),$$

with equality if and only if K and L are dilates or $L = \{0\}$. They also showed that combining (6.3) and (6.4), may get the classical Brunn-Minkowski inequality.

$$V(K + L)_{1/n} - V(L)_{1/n} \geq V(K)_{1/n},$$

whenever $K \in \mathcal{K}_{oo}^n$ and $L \in \mathcal{K}_{oo}^n$ and (6.2) holds with K and L replaced by $K + L$ and K, respectively. In particular, if (6.2) holds (as it does, for origin-symmetric convex bodies when $n = 2$), then (6.2) and (6.4) together split the classical Brunn-Minkowski inequality.

In the following, we give a new version of (6.4).

Lemma 6.1. If $K \in \mathcal{K}_{oo}^n$ and $L \in \mathcal{K}_{oo}^n$ are such that $L \subset \text{int} K$ and $1 \leq i < n$, then

$$\log \left(\frac{W_i(K + L)_{1/(n-1)} - W_i(L)_{1/(n-1)}}{W_i(K)_{1/(n-1)}} \right) \geq \int_{S_{n-1}} \log \left(\frac{h(K, u)}{h(K + L, u)} \right) dW_{n,i}(K, u),$$

with equality if and only if K and L are dilates or $L = \{0\}$.

Proof. Since $K \in \mathcal{K}_{oo}^n$ and $L \in \mathcal{K}_{oo}^n$ are such that $L \subset \text{int} K$. Let $\varphi(t) = -\log(1 - t)$, and notice that $\varphi(0) = 0$ and φ is strictly increasing and strictly convex on $[0, 1]$ with $\varphi(t) \to \infty$ as $t \to 1^-$. Hence the inequality (6.5) is a direct consequence of Lemma 4.3 with this choice of φ and $a = 1$. \hfill \Box

Theorem 6.2. If $K \in \mathcal{K}_{oo}^n$, $L \in \mathcal{K}_{oo}^n$ and $1 \leq i < n$, then

$$\log \left(\frac{W_i(K + L)_{1/(n-1)} - W_i(L)_{1/(n-1)}}{W_i(K + L)_{1/(n-1)}} \right) \geq \int_{S_{n-1}} \log \left(\frac{h(K, u)}{h(K + L, u)} \right) dW_{n,i}(K + L, u),$$

with equality if and only if K and L are dilates or $L = \{0\}$.

Proof. If $K \in \mathcal{K}_{oo}^n$ and $L \in \mathcal{K}_{oo}^n$, then $K + L \in \mathcal{K}_{oo}^n$. In view of $L \subset \text{int}(K + L)$ and from Lemma 6.1 with K replaced by $K + L$, (6.6) easy follows. \hfill \Box

Putting $i = 0$ in (6.6), (6.6) reduces to (6.4). Here, we point out a new conjecture which is an extension of the log Minkowski inequality (6.2): **Conjecture** If $K \in \mathcal{K}_{oo}^n$, $L \in \mathcal{K}_{oo}^n$ and $1 \leq i < n$, then

$$\int_{S_{n-1}} \log \left(\frac{h(L, u)}{h(K, u)} \right) dW_{n,i}(K, u) \geq \frac{1}{n-i} \log \left(\frac{W_i(L)}{W_i(K)} \right).$$

Corollary 6.3. If $K \in \mathcal{K}_{oo}^n$, $L \in \mathcal{K}_{oo}^n$ and $1 \leq i < n$, then

$$\int_{S_{n-1}} \log \left(\frac{h(K, u)}{h(K + L, u)} \right) dW_{n,i}(K + L, u) \geq \frac{1}{n-i} \log \left(\frac{W_i(K)}{W_i(K + L)} \right).$$
Proof. The result follows immediately from (6.7) with replacing K and L by $K + L$ and K, respectively.

It is easy that combine (6.6) and (6.8) together split the following classical Brunn-Minkowski inequality for quermassintegrals. If $K \in \mathcal{K}_{oo}^n$, $L \in \mathcal{K}_{oo}^n$ and $0 \leq i \leq n$, then

$$W_i(K + L)^{1/(n-i)} \geq W_i(K)^{1/(n-i)} + W_i(L)^{1/(n-i)},$$

with equality if and only if K and L are dilates or $L = \{0\}$.

7 A new version of Orlicz Minkowski’s inequality

In 2010, the Orlicz projection body Π_φ of K defined by Lutwak, Yang and Zhang [28]

$$h(\Pi_\varphi, u) = \inf \left\{ \lambda > 0 \mid \int_{S_{n-1}} \varphi \left(\frac{|u \cdot v|}{\lambda h(K,v)} \right) dV_n(K,v) \leq 1 \right\},$$

for $K \in \mathcal{K}_{oo}^n, u \in S^{n-1}$, where $V_n(K, \cdot)$ is the normalized cone measure for K. Here, we define the i-th Orlicz mixed projection body.

Definition 7.1. Let $K \in \mathcal{K}_{oo}^n, L \in \mathcal{K}_{oo}^n, \varphi \in \Phi$ and $0 \leq i < n$, the i-th Orlicz mixed projection body, $\Pi_{\varphi,i}$, define by

$$h(\Pi_{\varphi,i}, u) = \inf \left\{ \lambda > 0 \mid \int_{S_{n-1}} \varphi \left(\frac{|u \cdot v|}{\lambda h(K,v)} \right) dW_{n,i}(K,v) \leq 1 \right\},$$

for $u \in S^{n-1}$, where $W_{n,i}(K, \cdot)$ is the i-th normalized cone measure for K defined in (4.1).

Obviously, when $i = 0$, (7.2) becomes (7.1). In the Section, definition 7.1 of the i-th Orlicz projection body suggests defining, by analogy,

$$\widetilde{W}_{\varphi,i}(K,L) = \inf \left\{ \lambda > 0 \mid \int_{S_{n-1}} \varphi \left(\frac{h(L,u)}{\lambda h(K,u)} \right) dW_{n,i}(K,u) \leq 1 \right\},$$

and call as $\widetilde{W}_{\varphi,i}(K,L)$ Orlicz type quermassintegrals.

Theorem 7.1. If $\varphi \in \Phi$ and $K \in \mathcal{K}_{oo}^n, L \in \mathcal{K}_{oo}^n$ and $1 \leq i < n$, then

$$\widetilde{W}_{\varphi,i}(K,L) \geq \left(\frac{W_i(L)}{W_i(K)} \right)^{1/(n-i)}.$$

If φ is strictly convex and $W_i(L) > 0$, equality holds if and only if K and L are dilates.

Proof. Replacing K by λK, $\lambda > 0$ in (4.4) with $a = \infty$, we have

$$\int_{S_{n-1}} \varphi \left(\frac{h(L,u)}{\lambda h(K,u)} \right) dW_{n,i}(K,u) \geq \varphi \left(\frac{1}{\lambda} \left(\frac{W_i(L)}{W_i(K)} \right)^{1/(n-i)} \right).$$
Let

$$
\int_{S^{n-1}} \varphi \left(\frac{h(L, u)}{\lambda h(K, u)} \right) dW_{n,i}(K, u) \leq 1.
$$

Hence

$$
\varphi \left(\frac{1}{\lambda} \left(\frac{W_i(L)}{W_i(K)} \right)^{1/(n-i)} \right) \leq 1.
$$

In view of φ is strictly increasing, we obtain

$$
(7.6) \quad \left(\frac{W_i(L)}{W_i(K)} \right)^{1/(n-i)} \leq \lambda.
$$

From (7.3) and (7.6), (7.4) easy follows.

In the following, we discuss the equality condition of (7.4). Suppose that equality holds, φ is strictly convex and $W_i(L) > 0$. From (7.3), the exist $\mu = \widehat{W}_{\varphi,i}(K, L) > 0$ satisfies

$$
\int_{S^{n-1}} \varphi \left(\frac{h(L, u)}{\mu h(K, u)} \right) dW_{n,i}(K, u) = 1.
$$

Hence

$$
\mu = \left(\frac{W_i(L)}{W_i(K)} \right)^{1/(n-i)};
$$

namely:

$$
\varphi \left(\frac{1}{\mu} \left(\frac{W_i(L)}{W_i(K)} \right)^{1/(n-i)} \right) = 1.
$$

Therefore the equality in (7.5) holds for $\lambda = \mu$. From the equality condition of (4.4), it follows μK and L are dilates.

When $\varphi(t) = t^p$ and $p \geq 1$ in (7.3), it easy follows that

$$
\widehat{W}_{\varphi,i}(K, L) = \left(\frac{W_{\varphi,i}(K, L)}{W_i(K)} \right)^{1/p}.
$$

Putting $\varphi(t) = t^p$ and $p \geq 1$ in (7.4), (7.4) reduces to the classical L_p-Minkowski inequality (1.8) for mixed p-quermassintegrals.

There is no direct relationship between the Orlicz-Minkowski inequalities (4.7) and (7.4). Indeed, when $\varphi > 0$ on $(0, \infty)$, these can be written in the forms

$$
\frac{W_{\varphi,i}(K, L)}{W_i(K)} \geq \varphi \left(\left(\frac{W_i(L)}{W_i(K)} \right)^{1/(n-i)} \right), \quad (7.7)
$$

and

$$
\varphi \left(\frac{\widehat{W}_{\varphi,i}(K, L)}{W_i(K)} \right) \geq \varphi \left(\left(\frac{W_i(L)}{W_i(K)} \right)^{1/(n-i)} \right).
$$

respectively, and each of the two quantities on the left-hand sides can be larger than the other. This is very interesting.
8 Simon’s characterization of relative spheres

Theorem 8.1. Suppose $K \in \mathcal{K}_\infty^n$, $L \in \mathcal{K}_\infty^n$, and $\mathcal{S} \subset \mathcal{K}_\infty^n$ is a class of bodies such that $K, L \in \mathcal{S}$. If $0 \leq i < n - 1$ and $\varphi \in \Phi$, and

\[(8.1)\quad W_{\varphi, i}(Q, K) = W_{\varphi, i}(Q, L), \quad \text{for all } Q \in \mathcal{S},
\]

then $K = L$.

Proof. To see this take $Q = K$, and from (3.10) and Theorem 4.4, we have

\[W_i(K) = W_{\varphi, i}(K, K) = W_{\varphi, i}(K, L) \geq W_i(K) \varphi \left(\left(\frac{W_i(L)}{W_i(K)} \right)^{1/(n-i)} \right).\]

If φ is strictly convex, equality holds if and only if K and L are dilates or $L = \{o\}$. Hence

\[\varphi \left(\left(\frac{W_i(L)}{W_i(K)} \right)^{1/(n-i)} \right) \leq 1.\]

If φ is strictly convex, equality holds if and only if K and L are dilates or $L = \{o\}$. Note that φ is increasing, we obtain

\[W_i(L) \leq W_i(K).\]

Take $Q = L$, we have

\[W_i(L) = W_{\varphi, i}(L, L) = W_{\varphi, i}(L, K) \geq W_i(L) \varphi \left(\left(\frac{W_i(K)}{W_i(L)} \right)^{1/(n-i)} \right).\]

If φ is strictly convex, equality holds if and only if K and L are dilates or $L = \{o\}$. Hence

\[\varphi \left(\left(\frac{W_i(K)}{W_i(L)} \right)^{1/(n-i)} \right) \leq 1.\]

If φ is strictly convex, equality holds if and only if K and L are dilates or $L = \{o\}$. Hence

\[W_i(K) \leq W_i(L).\]

This yields $W_i(K) = W_i(L)$. Hence $K = L$. □

Corollary 8.2. Suppose $K \in \mathcal{K}_\infty^n$, $L \in \mathcal{K}_\infty^n$, and $\mathcal{S} \subset \mathcal{K}_\infty^n$ is a class of bodies such that $K, L \in \mathcal{S}$. If $\varphi \in \Phi$, and

\[(8.2)\quad V_{\varphi}(Q, K) = V_{\varphi}(Q, L), \quad \text{for all } Q \in \mathcal{S},
\]

then $K = L$.

Proof. The result follows immediately from Theorem 8.1 with $i = 0$. □

Putting $\varphi(t) = t^p$ and $p > 1$ in Theorem 8.1, we obtain the following result which was proved by Lutwak [21].
Corollary 8.3. Suppose $K \in \mathcal{K}_n^{\infty}$, $L \in \mathcal{K}_n^{\infty}$, and $S \subset \mathcal{K}_n^{\infty}$ is a class of bodies such that $K, L \in S$. If $p > 1$, $0 < i < n - 1$, and

$$W_{p,i}(Q, K) = W_{p,i}(Q, L), \quad \text{for all } Q \in S,$$

then $K = L$.

Theorem 8.4. Suppose $0 < i < n$ and $\varphi \in \Phi$. For $K \in \mathcal{K}_n^{\infty}$, the following statements are equivalent:

(i) The body K is centered,

(ii) The measure $W_{n,i}(K, \cdot)$ is even.

(iii) $W_{\varphi,i}(K, Q) = W_{\varphi,i}(K, -Q)$, for all $Q \in \mathcal{K}_n^{\infty}$.

(iv) $W_{\varphi,i}(K, Q) = W_{\varphi,i}(K, -Q)$, for $Q = K$.

Proof. To see that (i) implies (ii), recall that if K is centered, then $h(K, \cdot)$ is an even function, and $S_i(K)$ is an even measure. The implication is now a consequence of the fact that $dW_{n,i}(K, \cdot) = \frac{1}{W_i(K)} h(K, \cdot) dS_i(K, \cdot)$.

That (ii) yields (iii) is a consequence of the following integrable representation

$$W_{\varphi,i}(K, Q) = W_i(K) \int_{S^{n-1}} \varphi \left(\frac{h(Q, u)}{h(K, u)} \right) dW_{n,i}(K, u),$$

and the fact that, in general, $h(-Q, u) = h(Q, -u)$, for all $u \in S^{n-1}$. Obviously, (iv) follows directly from (iii).

To see that (iv) implies (i), notice that (iv), for $Q = K$, gives

$$W_i(K) = W_{\varphi,i}(K, -K).$$

The desired result follows from the fact that $W_i(-K) = W_i(K)$ and the equality conditions of the Orlicz-Minkowski inequality (4.7).

Corollary 8.5. Suppose $\varphi \in \Phi$. For $K \in \mathcal{K}_n^{\infty}$, the following statements are equivalent:

(i) The body K is centered,

(ii) The measure $V_{n,i}(K, \cdot)$ is even.

(iii) $V_{\varphi,i}(K, Q) = V_{\varphi,i}(K, -Q)$, for all $Q \in \mathcal{K}_n^{\infty}$.

(iv) $V_{\varphi,i}(K, Q) = V_{\varphi,i}(K, -Q)$, for $Q = K$.

Proof. The results follow immediately from Theorem 8.5 with $i = 0$.

Corollary 8.6. Suppose $0 < i < n$ and $p > 1$. For $K \in \mathcal{K}_n^{\infty}$, the following statements are equivalent:

(i) The body K is centered,

(ii) The measure $S_{p,i}(K, \cdot)$ is even.

(iii) $W_{p,i}(K, Q) = W_{p,i}(K, -Q)$, for all $Q \in \mathcal{K}_n^{\infty}$.

(iv) $W_{p,i}(K, Q) = W_{p,i}(K, -Q)$, for $Q = K$.

Proof. The results follow immediately from Theorem 8.5 with $\varphi(t) = t^p$ and $p > 1$.

This was proved by Lutwak [21]. That (iii) implies that K is centrally symmetric, for the case $p = 1$ and $i = 0$, was shown (using other methods) by Goodey [10].

Acknowledgements. This research was supported by the National Natural Sciences Foundation of China (11371334).
References

On the Orlicz-Brunn-Minkowski theory

Author’s address:
Chang-Jian Zhao
Department of Mathematics,
China Jiliang University,
Hangzhou, 310018, P. R. China.
E-mail: chjzhao@163.com, chjzhao@aliyun.com