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Abstract

The book [7] emphasizes three relevant aspects: first, the fact that the
notion of convexity is strongly metric-dependent either through geodesics
or through the Riemannian connection; second that Riemannian convex-
ity of functions is a coordinate-free concept, and consequently it can be
easily connected with symbolic computation; third, that the Riemannian
structure is involved essentially in formulating and solving programs by
means of induced distance, geodesics, Riemannian connection, sectional
curvature, etc.

The preceding arguments justify the effort to generalize the optimiza-
tion theory on Euclidean spaces to the Riemannian manifolds. The gener-
alization is obtained by selecting a suitable Riemannian metric, by passing
from vector addition to the exponential map, by changing the search along
straight lines with a search along geodesics, and by using covariant differ-
entiation instead of partial differentiation.

§1 shows that some difficulties appearing in the free-minimization prob-
lems belong to a wrong understanding of the suitable Riemannian struc-
ture of the space. §2 deals with Newton algorithm on Riemannian mani-
folds for finding zeros of a C∞ vector field or generally for a C∞ tensor
field. §3 describes the path of centers attached to a convex program on a
Riemannian manifold and analysis the monotonicity of the objective func-
tion along this curve. §4 gives theorems regarding the Newton method
near the path of centers of a convex program (one unit Newton step stays
inside the feasible set, quadratic convergence results, upper bound for the
difference of two Huard distance function values, etc), using simultane-
ously the original Riemannian metric and a Hessian Riemannian metric.
§5 gives upper bounds for the total number of outer iterations and inner
iterations needed by the center algorithm on a Riemannian manifold.

The theorems in §3-5 have their origin in the Euclidean variants ex-
posed in [1], [2] and in the Riemannian point of view about convex pro-
gramming developed in [7].
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1 Commentary on test objective functions

The test functions used in the numerical free minimization have been constructed
in such a way as to present various computational difficulties when we look for the
finding of a critical point. A list of some of more frequently used test functions on
(Rn, δij), together with an initial estimate x1 of the minimizer (critical point)
x∗, and a brief description of the computational difficulties presented by the
optimization problem is given for example in [11].

For some of such functions we shall point out that some difficulties belong to
a wrong understanding of the suitable Riemannian structure of the space, which
can create or destroy the convexity. Of course in the minima problems we are
interested to create the convexity of the objective function because this assures
the convergence of the numerical methods of optimization towards a minimum
point.

Let (M, g) be a complete n-dimensional Riemannian manifold, let ∇ be the
Riemannian connection and γ(t) = expx(tX), t ∈ [0, 1] be the geodesic deter-
mined by the initial conditions γ(0) = x ∈ M , γ̇(0) = X ∈ TxM .

If f : M → R is of class C∞, and x∗ is a minimum point (critical point) of
f , then the general descent algorithm for finding x∗ is:

Let x1 be an estimate of x∗.
1) Set i = 1.
2) Compute a vector Xi such that df(Xi) < 0.
3) Compute a number ti such that f

(
expxi

(tiXi)
)

< f(xi).
4) Compute xi+1 from xi+1 = expxi

(tiXi).
5) If xi+1 satisfies the given convergence criteria, then stop.
6) Set i = i + 1 and go to 2).
The Newton algorithm is the variant of the general descent algorithm with

X = −H−1df , where the Hessian H = ∇(∇f) is supposed to be nondegenerate.
For details, see [7] and the explanations in §2.

1. Rosenbrock banana function (1960)

f : R2 → R, f(x) = 100(x2 − x2
1)

2 + (1− x1)2, x = (x1, x2)

e = (−1 · 2; 1 · 0), x∗ = (1, 1), f(x∗) = 0.

Difficulties. The graph of this function looks like a steep-sided sharply curving
valley, the bottom of which follows the parabola x2 = x2

1. An Euclidean descent
method must in general take a very short steps in order to negociate the sharp
bend near (0,0) and must therefore provide new search directions very frecvently.

Let us show that there exists a Riemannian metric on R2 which produces
the convexity of Rosenbrock banana function [7].

Denote by (
R2, g0 =

(
1 0
0 1

))

the Euclidean plane. The function

F : R2 → R,F (y) = 100y2
2 + y2

1 , y = (y1, y2)
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is convex with respect to g0.
Now we consider the nonlinear coordinate transformation

y1 = 1− x1, y2 = x2 − x2
1.

The Riemannian manifold (R2, g0) is changed into
(

R2, g(x) =
(

4x2
1 + 1 −2x1

−2x1 1

))
, x = (x1, x2)

and F is changed into Rosenbrock banana function f which is convex with
respect to g.

The geodesics of (R2, g0) are straight lines, y1 = at + b, y2 = ct + d, t ∈ R.
The geodesics of (R2, g(x)) are parabolas, x1 = et+ f , x2 = e2t2 + gt+h, t ∈ R.

Consequently, in order to minimize f is suitable to use the descent algorithms
with respect to the Riemannian metric g(x), and not those with respect to the
Euclidean structure g0. Then all the above difficulties dissapear.
2. Powell function (1966)

f : R2 → R, f(x) = x4
1 + x1x2 + (1 + x2)2, x = (x1, x2)

e = (0, 0), x∗ = (?, ?)

Difficulty. For this problem

min
t

f(e− tH−1df(e)) = f(e)

so that no progress can be made beyond the estimate e of x∗ using Euclidean
Newton method together with an exact straight line search. Indeed,

df = (4x3
1 + x2, x1 + 2(1 + x2)), df(0, 0) = (0, 2)

H =
(

12x2
1 1

1 2

)
, H(0, 0) =

(
0 1
1 2

)
,

H(0, 0)−1 =
( −2 1

1 0

)
, H−1df(0, 0) =

(
2
0

)
,

ϕ(t) = f(−2t, 0) = 24t4 + 1, t = 0 is critical point,

min ϕ(t) = ϕ(0) = 1 = f(e).

The Riemannian structure which exceeds the preceding difficulty is those whose
geodesics are parabolas. Indeed, let x1 = 2t, x2 = −bt2, t ∈ R, be a geodesic
passing through the point (0,0) with the direction (2,0) at the moment t = 0.
We obtain

ϕ(t) = f(x1(t), x2(t)) = 24t4 − 2bt3 + (1− bt2)2.

Imposing ϕ′(t) = 0, i.e., (32 + 2b2)t2 − 3bt − 2b = 0 we obtain two real roots
t1, t2. Hence the Riemannian Newton method works.
Remark. Some recent papers [3] suggest that sometimes the changing of co-
ordinates (which imply the changing of the Riemannian metric) can be benefic
for a concrete optimization problem. But, of course, this idea is included in our
general idea [4]-[9] that is enough to change conveniently the Riemannian metric
in order to obtain a desired result.
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2 Newton method on Riemannian manifolds

Let (M, g) be a complete n-dimensional Riemannian manifold and ∇ be the
Riemannian connection determined by the metric g. The completeness implies
the fact that any two points of M can be joined by a minimal geodesic.

Let X be a C∞ vector field on M. Using the mathematical apparatus
(M, g,∇), we want to formulate a numerical algorithm for finding zeros of X. For
these we need the Riemannian version of Taylor theorem together the general-
izations of numerical techniques on Euclidean space to a Riemannian manifold.
These are realized via an intrinsic approach which leads one from the extrinsic
idea of vector addition to the exponential map and parallel translation, from the
search along straight lines to search along geodesics, and from partial differenti-
ation to covariant differentiation.

Let γ : [0, 1] → M,γ(t) = expx(tY ) be the geodesic fixed by the initial
conditions γ(0) = x ∈ M , γ̇(0) = Y ∈ TxM .
2.1. Meanvalue theorem. Let Wx be a normal neighborhood of the point x ∈
M , let Ȳ be a vector field on Wx adapted to Y ∈ TxM , and X be a C∞ vector field
on Wx. Denote τb the parallel translation with respect to expx(tY ) for t ∈ [0, b],
and xb = expx(bY ). Then there exists ε > 0 such that for every b ∈ [0, ε), there
is a ∈ [0, b] satisfying

τ−1
b Xxb

= Xx + b(∇Ȳ X)xa ◦ τa.

2.2. Taylor theorem. Same hypothesis as in theorem 2.1. Then there exists
ε > 0 such that for every b ∈ [0, ε), there is a ∈ [0, b] satisfying

τ−1
b Xxb

= Xx + b(∇Ȳ X)x + . . . +
bn−1

(n− 1)!
(∇n−1

Ȳ
X

)
x

+
bn

n!
(∇n

Ȳ X
)
xa
◦ τa.

Let x∗ = xb be a zero of the C∞ vector field X and x be an estimate of x∗.
If x is sufficiently close to x∗, we have

τ−1
b Xxb

= Xx + b(∇Ȳ X)x +
b2

2
(∇2

Ȳ X
)
xa
◦ τa

and the term
(∇2

Ȳ
X

)
xa

can be neglected. Consequently X(x∗) = 0 is replaced
by

b(∇Ȳ X)x ≈ −Xx.

If (∇X)x : TxM → TxM is nondegenerate, then we obtain

bȲx ≈ −(∇X)−1
x ◦Xx

and hence
x∗ ≈ expx(−(∇X)−1

x ◦Xx).

Consequently the most suitable direction and sense of moving from the point x
towards the point x∗ is given by the Newton vector

Nx = −(∇X)−1
x ◦Xx.
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Of course zeros of X are global minimum points, and hence critical points, of
the energy f = 1

2g(X,X). Also, if X(x) 6= 0, then Nx gives a descent direction
and sense for the energy f at x since df(Nx) = −2f(x) < 0.

The preceding considerations suggest that, given an initial estimate x1 of x∗,
we could estimate x∗ with arbitrary accuracy by generating the sequence {xi}
from

xi+1 = expxi
Ni, Ni = −(∇X)−1

xi
◦Xxi .

This procedure is the Newton method for estimating a zero of X, and is embodied
in the following
2.3. Newton algorithm. Let x1 be an initial estimate of x∗. Suppose that ∇X
is nondegenerate.

1) Set i = 1.
2) Compute the Newton vector Ni = −(∇X)−1

xi
◦Xxi

.
3) Compute xi+1 from xi+1 = expxi

Ni.
4) Set i = i + 1 and go to 2).
Under certain conditions, the sequence {xi} generated by the Newton algo-

rithm 2.3 converges to the zero x∗ of X. In this sense the following theorems holds
for general vector fields, though they are formulated for X = gradf = g−1 ◦ df ,
where g is the Riemannian metric on M and f : M → R is a C∞ function.
Of course, in the theory appears also the (1,1) tensor field H(f) = ∇(gradf) =
g−1 ◦ ∇(df), which is symmetric with respect to the Riemannian metric, i.e.,
g(H(f)Y,Z) = g(Y,H(f)Z) for any C∞ vector fields Y, Z on M. The tensor field
H(f) is called (positive or negative) definite if the associated (0,2) tensor field
H(f) = g◦H(f) is (positive or negative) definite. The tensor field H(f) is called
the Hessian of the function f . If x∗ is a critical point of f (i.e.,gradf(x∗) = 0),
and H(f)(x∗) is nondegenerate, then the critical point x∗ is called nondegener-
ate.
2.4. Theorem. If x∗ is a nondegenerate critical point of the function f ∈
C∞(M), then there exists a neighborhood U of x∗ such that for any x1 ∈ U ,
the iterates of the Newton algorithm 2.3, for X = gradf , are well defined and
converge quadratically to x∗.
2.5. Corollary. If H(f)(x∗) is positive (negative) definite and the sequence gen-
erate by the Newton algorithm 2.3 converges to x∗, then the sequence converges
quadratically to a local minimum (maximum) of f.
Remark. Let T be a C∞ tensor field on M and f = 1

2 ‖ T ‖2 be its energy.
The zeros of T , i.e., the solutions of the algebraic system T (x) = 0, are global
minimum points, and hence critical points, of the energy f. Therefore an extended
descent method, for example an extended Riemannian-Newton method, can be
used to find zeros of any tensor field.

3 Path of centers of a convex program

Let (M, g) be a Riemannian manifold and

(P ) max f0(x) subject to fα(x) ≤ 0, α = 1, . . . , m; x ∈ M
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be a convex program, i.e.,
1) the interior F 0 of the feasible region F is nonempty and bounded,
2) the functions −f0, fα are C2 convex functions on F 0.
The convexity of the functions fα implies the total convexity of the set F 0.
Let z be a lower bound for the optimal value z∗, and q be a given positive

integer. To the program (P) we attach the Huard distance function

φ(α, z) = −q ln(f0(x)− z)−
m∑

α=1

ln(−fα(x)).

Suppose that φ has positive definite Hessian. Then φ achieves the minimal value
in its domain (for fixed z) at a unique point x(z), called center. The center x(z)
satisfies

−q
df0(x)

f0(x)− z
+

m∑
α=1

dfα(x)
−fα(x)

= 0.

Also this point satisfies the Karush-Kuhn-Tucker conditions

fα(x) = 0

m∑
α=1

yα grad dfα(x) = grad df0(x), yα ≥ 0

fα(x)yα =
f0(x)− z

q
, α = 1, . . . ,m.

The set {x(z)} is called the path of centers. The method of centers for solving
the program (P) works as follows. Given z, we try to reach the vicinity of the
center x(z). Then we increase the lower bound z, and we try to reach the vicinity
of the new center, etc. To find (an iterate close to) the center, which is in fact
equivalent to minimizing φ, we use Newton method with approximate geodesic
search procedures [1], [5]-[9], [11]. Denoting −fα(x) = f0(x) − z for α = m +
1, . . . , m + q, the function φ is transcribed as

φ(x, z) = −
m+q∑
α=1

ln(−fα(x)),

and appear a bounded totally convex set Fz = {x | fα(x) ≤ 0, α = 1, . . . ,m+ q}
whose interior will be denoted F 0

z . Also, for Newton method we need

dφ(x, z) =
m+q∑
α=1

dfα(x)
−fα(x)

H(x, z) = H(φ)(x, z) =
m+q∑
α=1

[
H(fα)(x)
−fα(x)

+
dfα(x)⊗ dfα(x)

f2
α(x)

]
,

where
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gradφ = g−1 ◦ dφ,

and the Hessian H(φ) are built using the Riemannian metric g. Because H(φ) is
positive definite (by hypothesis), it can be used like a new Riemannian metric.

Differentiating and manipulating the relations defining x(z) and yα(z) we can
prove the following theorem about the monotonicity along the path of centers.
3.1. Theorem. The primal objective f0(x(z)) is monotonically increasing, the
dual objective f0(x(z))−∑m

α=1 yα(z)fα(x(z)) and f0(x(z))−z are monotonically
decreasing if z increases.

Also we can obtain an upper bound for the gap z∗ - z.
3.2. Lemma. One has

z∗ − z ≤
(

1 +
m

q

)
(f0(x(z))− z).

Proof. The center x(z) minimizes φ(x, z), the necessary and sufficient conditions
being those of Karush - Kuhn - Tucker. It follows that (x(z), y(z)) is dual feasible,
and we know that dual objective value is always greater than or equal to the
optimal value, i.e.,

z∗ ≤ f0(x(z))−
m∑

α=1

yα(z)fα(x(z)).

Hence

z∗ − f0(x(z)) ≤ −
m∑

α=1

yα(z)fα(x(z)) =
m

q
(f0(x(z))− z).

Consequently
(z∗ − z)− (f0(x(z))− z ≤ m

q
(f0(x(z))− z)

or

z∗ − z ≤
(

1 +
m

q

)
(f0(x(z))− z).

4 Properties near the path of centers

Suppose that φ is k-self-concordance with k ≥ 1. The boundedness of F 0 and
the self-concordance of φ imply the strict convexity of φ, i.e., H(φ)(x, z) > 0.
In order to prove some properties of approximately centered points, we shall
use simultaneously [1], [2], [8], [9] the Riemannian metric g and the Riemannian
metric H(φ) = H.

In the center method, the program (P) is replaced by a sequence of mini-
mizing φ(x, z) using Newton method with (approximate) geodesic search proce-
dures. Of course, the Newton vector field is N = −H−1dφ, and, if we use H like
a Riemannian metric, N = −gradφ. Note that ‖ N ‖H= 0 iff x = x(z).
4.1. Theorem. Let x ∈ F 0

z , X ∈ TxM and γ(t) = expx(tX), t ∈ [0, 1] be the
geodesic determined by γ(0) = x, γ̇(0) = X. If ‖ X ‖H(x,z)<

1
k , then γ(1) ∈

F 0
z ⊂ F 0.
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4.2. Theorem. Let γ(t) = expx(tN) be the geodesic γ : [0, 1] → M which
verifies the initial conditions γ(0) = x, γ̇(0) = N.

If ‖ N ‖H(x,z)<
1
k , then x+ = γ(1) ∈ F 0

z , and

‖ N(x+, z) ‖H(x+,z)≤
k

(1− k ‖ N ‖H)2
‖ N ‖2H .

For ‖ N ‖H < 3−√5
2k , we find

‖ N(x+, z) ‖H(x+,z)<‖ N ‖H

and so the Newton algorithm is convergent. For ‖ N ‖H ≤ 1
3k , we obtain

‖ N(x+, z) ‖H(x+,z)≤
9
4
k ‖ N ‖2H .

4.3. Theorem. If ‖ N ‖H≤ 1
3k and x is an approximation of the exact center

x(z), then

φ(x, z)− φ(x(z), z) ≤ ‖ N ‖2H
1− ( 9

4k ‖ N ‖H)2
.

4.4. Theorem. If ‖ N ‖H≤ 1
3k and q ≥

√
m
k , then

f0(x(z))− z ≤
(

1 +
2
√

m

q

‖ N ‖H

1− 9
4k ‖ N ‖H

)
(f0(x)− z).

Proof. We have dφ(N) = − ‖ N ‖2H . Since

dφ(x, z) =
q

f0(x)− z
df0(x)−

m∑
α=1

dfα(x)
−fα(x)

,

it follows

df0(x)(N) =
f0(x)− z

q

(
‖ N ‖2H +

m∑
α=1

dfα(x)(N)
−fα(x)

)
.

On the other hand [1], [9]

|
m∑

α=1

dfα(x)(N)
−fα(x)

| ≤ √
m ‖ N ‖H .

Consequently

df0(x)(N) ≤ f0(x)− z

q
(‖ N ‖2H +

√
m ‖ N ‖H) ≤ 2 ‖ N ‖H

f0(x)− z

q

√
m.

If x1 = x, and x2, x3, . . . is the Newton sequence starting at x1, then

‖ N(xi, z) ‖H(xi,z)≤ 9
4k ‖ N(xi−1, z) ‖2H(xi−1,z)

...

≤ (
9
4k

)2i−1‖ N(x1, z) ‖2i

H(x1,x)
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and hence

lim
k→∞

‖ N(xi, z) ‖H(xi,z)= 0.

Since {xi} is included in a bounded region, and ‖ N(x, z) ‖H(x,z)= 0 iff x = x(z),
all limit points of the sequence are x(z). In other words, the Newton sequence
converges to x(z).

Using the inequalities and the convexity of −f0(x) we obtain

f0(xi+1)− z = f0(xi)− z + f0(xi+1)− f0(xi) ≤
≤ f0(xi+1)− z + df0(xi)(N(xi, z)) ≤

≤
(

1 + 2 ‖ N(xi, z) ‖H(xi,z)

√
m

q

)
(f0(xi)− z)

and hence

f0(xi+1)− z ≤ (f0(x1)− z)Πi
j=1

(
1 + 2 ‖ N(xj , z) ‖H(xj ,z)

√
m

q

)
≤

≤ (f0(x1)− z)Πi
j=1

(
1 + 2

(
9
4
k

)2j−1

‖ N ‖2j

H

√
m

q

)
.

If q ≥
√

m
k , we obtain [1]

f0(x(z))− z ≤ (f0(x1)− z)Πi
j=1

(
1 + 2

(
9
4
k

)2j−1

‖ N ‖2j

H

√
m

q

)
≤

≤
(

1 +
2
√

m

q

‖ N ‖H

1− 9
4k ‖ N ‖H

)
(f0(x1)− z).

5 Complexity analysis

Using the results in the preceding paragraph, we can find upper bounds for
the total number of outer iterations and inner iterations needed by the Center
algorithm stated in [1], [8].

The analysis refers to long-, medium-, and short-step variants with τ = 1
3k .

The proofs of the propositions are similar to those in [1], [9].
5.1. Theorem. The Center algorithm ends up with an ε-optimal solution for
(P) after at most

4
θ

(
1 +

m

q

)
ln

4
(
1 + m

q

)
(z∗ − z1)

ε

outer iterations.
5.2. Lemma. If γ(t) = expx(tN), t ∈ [0, 1] and t̄ = 1

1+k‖N‖H
, then

φ(x, z)− θ(γ(t̄), z) ≥ 1
k2

(k ‖ N ‖H − ln(1 + k ‖ N ‖H)).
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5.3. Theorem. The total number of inner iterations during an arbitrary outer
iteration is at most

22
3

+ 22qk2θ

(
θ

1− θ
+

3
√

m

qk + 3
√

m

)
.

Combining theorems 5.1 and 5.3, we obtain the total number of iterations.
5.4. Theorem. An upper bound for the total number of Newton iterations is
given by

88
(

1 +
m

q

)(
1
3θ

+ qk2

(
θ

1− θ
+

3
√

m

qk + 3
√

m

))
ln

4
(
1 + m

q

)
(z∗ − z1)

ε
.

Consequently, to obtain an ε-optimal solution and setting q = θ(m), the
algorithms needs

−O(
k2m ln z∗−z1

ε

)
Newton iterations for the long-step variant (0 < θ < 1);

−O(
k2
√

m ln z∗−z1
ε

)
Newton iterations for the medium-step variant for θ =

ν√
m

> 0;
−O(

k
√

m ln z∗−z1
ε

)
Newton iterations for θ = ν

k
√

m
> 0.

For the short-step variant we states how the norm changes when z is in-
creased.
5.5. Lemma. If z+ = z + θ(f0(x)− z), then

‖ N(x, z+) ‖H(x,z+)≤‖ N ‖H +
θ

1− θ

√
q.

5.6. Lemma. Let x+ = γ(1) and z+ = θ(f0(x)− z), where θ = 1
22k

√
q . If

‖ N(x, z) ‖H(x,z)≤
1
3k

,

then
‖ N(x+, z+) ‖H(x+,z+)≤

1
3k

.

Consequently, if θ is enough small, then one unit Newton step is sufficient
to reach the vicinity of x(z+). By theorem 5.1, a short-step algorithm requires
O(

k
√

m ln z1−z0
6

)
Newton iterations, using q = θ(m).
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