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Abstract

The aim of this report is to describe some recent research in the
interdisciplinary area of convex functions and optimization methods on
Riemannian manifolds summarizing the papers of C.Udriste, V.Balan,
T.Rapcsak, T.Csendes, S.T.Smith, A.Edelman, T.Arias, O.P. Ferreira,
P.R.Oliveira. The choice of the topics and references is largely influenced
by the author’s own interests and it is no way a complete list, which would
be nearly impossible to be made and to be presented in a single exposition.
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1 On some works of C.Udriste

The book [1] introduces the reader into the fascinating present- day theory of
convex functions, geometry, standard dynamical systems, optimization and de-
scent numerical algorithms on Riemannian manifolds, exemplified by appropriate
computer experiments. The simplest way to give an idea of the scope of the book
which was produced as the first account in about the last twenty years, is to list
the main topics by chapters.

The first chapter (Metric properties of Riemannian manifolds) is a brief intro-
ducing into Riemannian geometry and minima of functions. The main purpose
of the second chapter (First and second variations of the p-energy of a curve) lies
in the study of the Hessian of the p-energy of a curve at each critical point and
in the geometrical interpretation of Jacobi fields. Also, some information about
the distance between a point and a set, and the distance between two sets are
given.

The third chapter (Convex functions on Riemannian manifolds) presents the
basic concepts and theorems regarding the Riemannian convexity of real func-
tions. A convex function on a Riemannian manifold is a real-valued function
whose restriction to every geodesic arc is convex. When we refer to a subset A of
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a Riemannian manifold (M, g), this definition of the convexity of f : A — R re-
quires a definition of the total convexity of the subset A. Only for a C? function
it is possible to give a definition which does not depend directly on geodesics: a
C? function f is convex if H essq f is positive semidefinite.

Within the same chapter, two relevant aspects are emphasized: first, that
notion of Riemannian convexity is strongly metric-dependent either through
geodesics or through the Riemannian connection; second, that Riemannian con-
vexity of functions is coordinate-free and therefore it can be easily connected
with symbolic computation. Basic properties of convex programs, dual-theory
problem and the Kuhn-Tucker theorem are then discussed.

The chapter ends with a description of the distance from a point to a closed
totally convex set and the distance between two closed totally convex sets when
the sectional curvature of the Riemannian manifold is nonpositive.

The fourth chapter (Geometric examples of convex functions) focuses on non-
trivial examples of convex functions given by R.L.Bishop, J.Cheeger, R.E.Greene,
D.Gromoll, B.O’Neill, K.Shiohama, H.Wu, and analyses some changes of the
Riemannian metric preserving the completeness and the convexity.

The fifth chapter (Flows, convexity and energies) begins with some basic
properties of the flows generated by vector fields on Riemannian manifolds and
main properties of the gradient flow. Here it is shown that a complete Rie-
mannian manifold admitting a nonconstant convex function must have infinite
volume and certain topological properties which can be described by means of
diffeomorphisms. New information about irrotational, Killing, conformal, affine,
projective and torse forming vector fields are obtained analysing the variation of
the energies of these vector fields along the orbits and the critical points of the
energies, including the cases in which the energies are convex functions. These
problems are not only of mathematical interest, but have direct physical interest;
e.g., critical points of the energy of a stationary magnetic field which are not
zeros of the field are important in Geophysics and in Stability Theory of Plasma
and Controlled Thermonuclear Fusion Research, because these points give mini-
mum or saddle energy values with nonvanishing intensity. This paragraphs ends
with the Runge-Kutta approximation of an orbit and a TP program designed
for plotting such orbits.

The sixth chapter (Semidefinite Hessians and applications) handles the con-
vex functions on Riemannian manifolds to obtain mathematical information
about submanifolds, harmonic maps, g-connected domains , conservative dy-
namical systems,and linear complementarity problem .

The seventh chapter (Minimization of functions on Riemannian manifolds)
starts with properties of the minus gradient flow, the Runge- Kutta approxi-
mation of a minus gradient line and a computer T'C' program for plotting such
curves. Then numerical approximations of a geodesic are discussed and com-
puter T'C' programs which plot geodesics are given. There follows a discussion
of the descent algorithms on Riemannian manifolds having in mind that we can
choose the Riemannian metric according to the nature of specific problems. The
Riemannian structure of the manifold is involved in the theory of minimization
by means of the Riemannian metric, by the induced distance, by geodesics which
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are initially tangent to descent directions, by the Riemannian connection, and
by the sectional curvature.

Chapter 3 and chapter 7 point out that computational difficulties presented
by some optimization problems belong to a wrong understanding of the suitable
geometry of the space, which can create or destroy the convexity of classical test
objective functions. In fact the Rosenbrock banana function, Powell function,
Fletcher and Powell function, etc are Riemannian convex functions.

The appendices (Riemannian convexity of function f : R — R, Descent
methods on the Poincare plane, Descent methods on the sphere, Completeness
and convexity on Finsler manifolds) constitute an attempt “to open the eyes”
of beginners and to make accessible to all users of this book some basic ideas in
Riemannian geometry, optimization theory and computer programs.

The real novelties which distinguish this book come from the following aims
of the author:

- to convince the readers that convexity, far from being a dusty classical field,
is on the contrary a prodigious source of challenging open problems;

- to describe connections between Riemannian geometry, optimization, dy-
namical systems, numerical analysis and computer programs.

There are freqvent mentions of major open problems, and interspersed
throughout the text is a succession of examples and remarks that illuminate
and amplify the core material thoroughly developed in the form of definition-
theorem-proof.

The preceding arguments justify the effort to generalize the optimization
theory on Euclidean spaces to the Riemannian manifolds. The generalization
is obtained by selecting a suitable Riemannian metric, by passing from vector
addition to the exponential map, by changing the search along straight lines
with a search along geodesics, and by using covariant differentiation instead of
partial differentiation.

The paper [2] presents the Newton method on a Riemannian manifold for
finding critical points of a function, describes the general framework of the log-
arithmic barrier method and of the center method for smooth convex program-
ming on a Riemannian manifold, analyses the monotonicity along the central
path showing that the vector fields of interior point algorithms are Riemannian
gradients, and gives the Riemannian variants for some lemmas of Nesterov and
Nemirovski.

The paper [3] reveals new ideas about Newton algorithm on Riemannian
manifold for finding zeros of a differential 1-form, including properties of the
Newton method near the central path of a convex program obtained by the
original Riemannian metric and a Hessian Riemannian metric, and upper bounds
for the total number of outer and inner iterations for the logarithmic barrier
algorithm applied to a convex program on a Riemannian manifold.

The paper [4] shows that some difficulties appearing in the free- minimization
problems belong to a wrong understanding of the suitable Riemannian structure
of the space, which can create or destroy the convexity. Of course in the minima
problems we are interested to create the convexity of the objective function
because this assures the convergence of the numerical methods of optimization
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towards a minimum point. Further, this paper deals with Newton algorithm on
Riemannian manifolds for finding zeros of a vector field or generally of a tensor
field, including theorems regarding the Newton method near the path of centers
of a convex program obtained by the original Riemannian metric and a Hessian
Riemannian metric, and upper bounds for the total number of outer and inner
iterations needed by the center algorithm on a Riemannian manifold. The paper
[4] and the present Note were included in the oral communication at The Second
International Workshop on Differential Geometry and Its Applications, Ovidius
University of Constantza, Romania, September 25-28, 1995.

C.Udriste and V.Balan [5] introduce and describe naturally the properties of
the gradient, divergence, Hessian, Laplacian on a vector bundle endowed with
a (h,v)-metric and with a suitable connection. Results on convexity and the
interpretation of a dual program like a problem on a trivial vector bundle are
given. Explicit formulas for special (h,v)- metrics and for particular manifolds
(Finsler, Lagrange, etc) are obtained.

2 On some works of T.Rapcsak and his cowork-
ers

T.Rapcsak and his coworkers analyse the structure of nonlinear optimization
problems by means of techniques in differential geometry.

In [6],[7], nonlinear coordinate transformations are discussed in order to sim-
plify global unconstrained optimization problems and to test their unimodality
based on the analytical structure of the objective functions. If the transformed
problems can be quadratic in some or all the variables, then the optimun can be
calculated directly without an iterative procedure, or the number of variables to
be optimized can be reduced. Otherwise, the analysis of the structure can serve
as the first step for solving global unconstrained optimization problems.

Complementarity systems are related to numerous important issues of non-
linear optimization and application areas such as engineering, structural me-
chanics, elasticity theory, lubrication theory of networks, etc. Using some ideas
from the Riemannian convexity, in [8], [9] sufficient conditions are established for
the connectedness of nontrivial subsets of the solution set relating to linear and
nonlinear complementarity systems with a special structure. Connectedness is
important to investigate stability and sensitivity questions, parametric problems
and for extending a Lemke-type method to a new class of problems.

In [10] the behaviour of interior point algorithms by using a suitable Rieman-
nian metric is analysed. It is shown that the vector fields of several interior point
algorithms for linear programming are the Riemannian gradients of the linear,
potential or logarithmic barrier functions. Also, a class of polynomial variable
metric algorithms is given for solving the canonical form of linear programming
with respect to a wide class of Riemannian metrics.
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3 Onsome works of S.T.Smith and his coworkers

S.T.Smith [11], [12] refers to optimization problems posed on Riemannian mani-
folds. Newton method and the conjugate gradient method on Riemannian mani-
folds are introduced and shown to possess quadratic and superlinear convergence,
respectively. These methods are applied to several eigenvalue and singular value
problems, formulated as constrained optimization problems. New efficient algo-
rithms for the eigenvalue problem are obtained by exploiting the special homo-
geneous space structure of the constraint manifold. It is shown that Newton
method applied to the Rayleigh quotient on a sphere converges cubically, and
that the Rayleigh quotient iteration is an efficient approximation of Newton
method. The Riemannian version of the conjugate gradient method applied to
this function gives a new algorithm for finding the eigenvectors corresponding to
the extreme eigenvalues of a symmetric matrix. The Riemannian version of the
conjugate gradient method applied to a generalized Rayleigh quotient yields a
superlinearly convergent algorithm for computing the k eigenvectors correspond-
ing to the extreme eigenvalues of a matrix. Several gradient flows are analyzed
that solve eigenvalue and singular value problems. The general theory is ap-
plied to the subspace tracking problem found in adaptive signal processing and
adaptive control.

A.Edelman, T.Arias and S.T.Smith [13] gave new ideas about minimization
problems on the Stiefel and Granssmann manifolds using the Riemannian vari-
ants of some numerical algorithms and unifying differential geometry, optimiza-
tion, and numerical linear algebra with intended applications in computational
physics.

4 On the paper of O.P.Ferreira-P.R.Oliveira

O.P.Ferreira, P.R.Oliveira [14] generalize the subgradient method to the context
of Riemannian manifolds and suggest the influence of the sectional curvature on
the convergence of minimization algorithms.
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