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Irena Comié

Abstract

In the paper are presented the explicit expressions for the components
of the torsion and curvature of a generalized connection on the 2-osculator
bundle of a real differentiable manifold; the corresponding Ricci identities
for the generalized connection are also derived.
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1 Introduction

Let M be a C*°, n-dimensional manifold and E = (Osc?M, w, M) its 2-osculator
bundle. The K-osculator bundle was studied among others in [15], [16], [17],
where the adapted basis is determined. As we here need more types of indices,
the adapted basis of T(E) and T*(F) will be presented.

Some point u € E in the local charts (U, ) and (U’,¢’) has coordinates
(x%, 9%, 2") and (xil, y zi/) respectively, ¢ = 1,2,...,n. In U N U’ the allowable
coordinate transformations are given by the equations

oz

o = 2t (x) rank| G| = n
. i’ .
_ Oz
(11) yl — a‘ij y]
i1 9%V ki 0zt _j
2= Sagen¥d Y T e

It can be shown, that the transformations of type (1.1) form a group.
The adapted basis B of T(E) is

6 & 0

(1.2) B= {55 9h

where
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Theorem 1.1. The element of B ((1.2)) with respect to (1.1) are transformed
as tensors, i.e.

I R N R R )
' szt Qxt dxt’ Syt Oat Sy’ 02 Oxt 02V

if the nonlinear connections ()N and (2N are transformed in the following
way:
j 0z Ox! dy? Ox*

j/ o _ R
(1.6) (N7 = (N ozt Oxi Ozt 9z’

v - Ozt Oz’ ‘ayj/ ot 929 9a'
3 [ dadidedi J — —

The basis of T*(F) dual to B is

(1.8) B* = {da", 6y, 52"},
where

(1.9) Sy’ =dy' + (1)M§dxj

(1.10) 62" =dz' + (WMidy’ + (2)Mda’.

Theorem 1.2. The elements of B* ((1.8)) with respect to (1.1) are transformed
as

-/ &Ei' . -/ 6xi/ . -/ a’Ei/ .
1.11 dx* = —dx*, 0y* = ——dy', §z" = =46z
(1.11) o gzt 00 Y oz Y 0% ari -

if for the nonlinear connections (1) M and (2) M the following equations are valid

(1.12) (M = (DN?

(1.13) @M} = 2N; + (DN (LN

If we denote as Ty, Ty, , Ty, the subspaces of T'(E) spanned by {52}, {%yi},
{8‘;} and as Tj;, Ty, , Ty, the subspaces of T*(E) spanned by {dz'}, {dy'},
{6z"} respectively, then

T(E):TH@TVH ®Tv,, T*(E):TITI@T\Z@T\Z‘
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For the further examinations it is useful to introduce different kinds of indices.
Indices 4, j, h, k,I = 1,n will be used in Ty and T}; a,b,c,d,e, f =n+1,...,2n
in Ty, and 1y, , p,q,r,s,t =2n+1,...,3n in Ty, and Ty, . The Greek letters as
indices will take values from 1 to 3n. Using these notations the adapted basis B
and B* given by (1.2) and (1.8) have the form:

g o6 0
(1.14) B:{E’Ty“’@}:{6“6(“61)}:{6&}7
(1.15) B* = {da7,6y", 62} = {6°},
where from (1.3), (1.4), (1.9) and (1.10) we get
(@) 2 = =g — (OM - QNS
(b) 52a = 32 -1 )Ng an
(1.16) (c) dy* = dy*+ (1)N2da'
(d) 629 = dz?+ (YNIdy* + (N} + (DN] (DN da! =
= 29+ ()N + (2)/\/qu7
In (1.16)

N = N = N, @NF = @N]
if i = a(modn) and j = b = g(modn).
Some vector field X € T(F) and some 1-form w € T*(FE) expressed in the
bases B and B* have the form:
X = X 6acb +Xa sz - Xa6
w = w;dd? +wb5y + wgdz? = wgéﬁ

(1.17)

With respect to (1.1) the coordinates of X and w transform in the following
way:

i i Oz’ a’ a 9y“ sz
X' o= XX Xaa,Xp xr2
_ dz? y® 029
Wi = Wi, Wy = wba iy Wy = We g,

because if i = a = p(modn) we have

ozt oy 9z

oxt  Oye  Ozp’

2 The generalized connection on T(F)

Let V : T(F) x T(E) — T(FE) be a linear connection such that V : (X|Y) —
VxY e T(E),VX,Y € T(E).

Definition 2.1. The generalized connection on T'(F) is a linear connection V
determined by:

(a) V&i §B = Fgmi 5/{7
(2.1) (b) V(sa(sg = Cﬁ“aé,{
() Vobs = Lidn
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where 3 =jor B=bor 3 =qand
(22) T:56 = T 0, + T:°0. + T 0.
We shall use the abbreviated form of (2.1):
(2.3) V5,05 =15 40k
From (2.1) and (2.3) follows:
Ifa=i then' = F; ifa=a, then ' =C; if a = p, then I = L.

Proposition 2.1. If X is the vector field ((1.17)) defined on E, then the fol-
lowing equations are valid:

Vs, X = X,0a , X =X+ Fy, XP
(2.4) Vo, X = Xabo , X%a=0,X*+Cp XP
VSPX :Xa||1760¢ ) XaHP :8an+LﬁapXB7

where
(2.5) Iy XP=T; X74+T; X"+, X9, T=ForI'=CorT =1L)

Theorem 2.1. If X and Y are vector fields in TE expressed in basis B, V the
generalized connection defined by (2.1), then

(2.6) Vy X = (X{3)Y"6a,
where
(2.7) Y = YT Y 4l Y

Theorem 2.2. All covariant derivatives X7, Xa, X[, (o = j, or o =
b, or a = p) from (2.4) are transformed as tensors with respect to (1.1) if all
connection coefficients from (2.1) are transformed as tensors, except the follow-

ing which have the form:

-/ -/ ’
w Ozt 0xF 9xd  0%2F  O2F

(2.8) ji IV ot Ok Ol + Ox'0xId Ozt
coxt Ay aye 9%y 02"

( ) bi b i ot 8yb ayc/ 8xzayb 8yc/
c oz 927 9zm 9%z 92"

2.1 F' =F} — -

(2.10) at TV ozt 0z Oz + 0x'021 97"

Theorem 2.3. The torsion tensor T for the generalized connection V has the
form:
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(2.11) T(X,Y)=VxY —VyX — [X,Y]=T)3Y*X",,
where
(2.12) Toﬁ,@ == Faﬁﬁ — F;a

except the following components:

)5 = FfS - 55+ K
Tij = C’jcb _ Fbcj + chb — _Tbcj
Tr = FT —FT +Kr
213 ]TZ jTZ 17]‘ Jrl r
o T, = Cfy - B+ Ky = -1,
Tjrq = Ljrququ+Kjrq—quj
T, = Cb a Ca y K[y
where
K = 6N = 6:()NF,
K, = 8;(QN] = 6(QN] + (WNIKS,
(2.14) Kir'b = 0p(1) i ; o
K = 6N —6i(ONT + (OWNTKS,
Ky = 042N,

Proof. By direct calculation we obtain

(2.15) [(X,Y] = X(0aYP)05 — Y (0. XP)05 + XY P (0005 — 00a),

(2.16) XYP (0005 — 0300) = X*YPK 50, =
= X'V (K50 + K,';0,) + (X'Y? = Y XP) (K50 + K, 0r)+

+H(XYT-YIXY)K, 0r + XY K0,
Substituting (2.15) and (2.16) into (2.11) we obtain (2.12) and (2.13).

3 The curvature theory of V
The curvature tensor for the generalized connection V is defined as usual
(3.1) R(X,Y)Z =VxVyZ —VyVxZ —Vxy|Z.
If we use the notations
X =X%,, Y =YP0s, Z=270,,

then we have

25
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VxVyZ = Vxey, Vysy, 270y =
vXa LY P(9527)0, +YﬁZVF 50) =
X%(Dq Yﬂ)(agZV)B + X°YP (0, 8527)87+
XYP(OpZ )7 o0k + X (0aYP) 27T F 30+
XY8(9, Z’Y)F" O+ XYPZV(0aLF )0+
XQY527F A AN

(3.2)

From (2.15) and (2.16) follows

VierZ = X(0.YP)(0527)0, + X*(0,Y%) 2T 5,0,
Y (0, XP) (052710, — Y (0, XP) 2T 10,
X“Yﬁ[(a 0 — 0304 )Z'Y]a +
Xvo‘Y’gZA/KV(XGBFV 9Ok

(3.3)

Substituting (3.2) and (3.3) into (3.1) we obtain

RX.Y)Z = [KFs,XYP — (KSCF, + K%LE )X Y-
(3.4) (ch 7 —i—biL )(X’Yb YXb)—
K LA (XY YiX0) — K1, LF XYY 270,
where
(35) (3 5) ¥ ,Ba - (811F'ynﬁ - F'ygaFOR,B) - (a7ﬁ)‘

As the indices «, 8, 7, k belong to one of the sets {i,7, kI, ...},
{a,b,e,d,...}, {p,q,7,s,t,...} (corresponding to Ty, Tv,, Ty, respectively), so
on the TE we have 3* = 81 types of curvature tensors. It is meaningless to
introduce different letters as R, P, S for the curvature tensors as in Finsler
geometry.

We shall denote

(3.6) Ry g0 = Ky'ga
for all (8,a) except when (8,0) = (j,1), (8,a) = (i,b), (B,2) = (i,q) and
(B,a) = (b,a). In these cases we have

Ry, =K\ —K5Cr. - K451y

"/Jl Y aq

= K"y + KSCF + K L"”” =—

(37) 'y’izb — K p K K v be?
Rv’izq K“/ ig T qug 7R7’gw
R’y ba — K’y ba K L = R’y ab*

As Rrg, = —RJ 5 we can write (3.4) in the form:
RX,Y)Z = [SKF5 (X0YF —YoXP)—
K C’ FoA KLY ) (XY - YIXT)—

K cn + KL (XYY — YIXP) 4

/\AN"’“

1
2
1
2 . .
(3.8) (K, + K, LE)(YXY - XY -
IK, ”"qu (Xfyq — Yi‘Xq)—i—
1K, qL,Y (YiX7— Xiya)—
K, LF (XY — YoX) 276,
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For (3, a) = (j,4) the sum of the first and the second line in (3.8) is equal to
sRF(XYT —YiXT), for (8,c) = (b,i) the sum of the first and the third line
in (3.8) is equal to R, (XY? —Y'X?) etc.

From (3.4)—(3.8) follows
Theorem 3.1. The curvature tensor of the generalized connection V has the

form

1 K [ (03
(3.9) R(X,Y)Z = SR 50,(X YP —yexPz7s,,
where the components of R are determined by (3.6) and (3.7).
Formula (3.9) is short and elegant, but the explicit form of curvature tensor
is much longer, for instance if (5, ) = (b,4) from (3.5) and (3.7) we have:

RKJ

7y bi 51‘07% - F 'yei Cyy — DF. it CwebF - K507 — KWLy, =

K
01
. Kk _ k Kk _ c Kk _ r _ K
0:CFy = BN O, — ESCH — EC, — O Ff5+
(6]

Hb
C'ykakKi + C»ychc'i + C'yerrRi - bC'yHc - KinL'yHr'

4 Ricci identities for V

From (2.6) it follows

(A1) VxVyZ = [(Z])Y)aX 0y = (2],,Y" + 27,Y7,
From (2.6), (2.15) and (2.16) we obtain

)X°5,.

(4.2) Vixv)Z = Z]4[X,Y)’6, = A+ B,

where

(4.3) A= Z1[X(0aY7) = Y (0 X)]6, =
= Z XY, =YX, — (), -T])X*Y’s,
B = XWYI[ZVKS+ 27| K%)6,+

(4.4) (XY —Y'X")[27] K + 27| K]0y

(XY - YiX)5, + XYV 2|, K ,0,.
Taking into account (2.13) and (2.14) we obtain
— 7
(4.5) A+B=1[Z,
From (4.1), (4.2) and (4.5) we obtain

(XO‘YB _ YocXﬁ

lex |ex

)= 2

|k

Ty, XY"6,,.

(46) RX.Y)Z = (127‘5‘& ~Zjojp + 2 Tg )X Y05, =
3(Z 510 = 2 + 27 T5) (XY P —YOXO)5,.

From (4.6) and (3.9) it follows:
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Theorem 4.3. The Ricci equations for the generalized connection V have the
form:

(4.7) Z g0 = Llagp + 21T = R 5a 2"

(4.7) contains 3% types of Ricci equations, because each Greek index may be
the element from one of the sets: {4, j, h, k,1}, {a,b,c,d, e}, {p,q,r,s,t}.
For (8,«) = (j,4) (4.7) becomes
VAT A

|51e lilJ

+ 2T + 2T + 20|, T =

_ Yy k vy c 0%
= R),Z"+ R}, Z° + R, 2P,
for (3,«) = (p,4) (4.7) takes the form
Z’Y”p\i - Z’L”P + ZTkTpki + Z’Y|CTpci + Z’y”?“TpTi =

k c T
ol + R Z +RY 7" et.c.

T pi
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