A distinguished geometry perspective on
multi-time affine quadratic Lagrangians
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Abstract. For a space endowed with a general quadratic multi-time La-
grangian and an associated non-linear connection, the paper constructs the
main Riemann-Lagrange distinguished geometric objects (linear connec-
tion, torsion and curvature). Some Einstein-like equations for a canonical
geometrical abstract multi-time gravitational potential, together with a
trivial geometrical abstract electromagnetic-like theory, are derived from
the given quadratic affine multi-time Lagrangian and its associated non-
linear connection.
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1 Introduction

It is notable fact that quadratic multi-time Lagrangians are present in most physical
domains. Ilustrative examples are present in the theory of elasticity [7], the dynamics
of ideal fluids, the magnetohydrodynamics [3], [4] and in the theory of bosonic strings
[2]. This fact encourages the natural attempt of geometrization for quadratic multi-
time Lagrangians. This framework implies, as can be seen below, the introduction of
a corresponding Riemann-Lagrange geometry on 1-jet spaces.

2 The generalized multi-time Lagrange space of a
quadratic Lagrangian
Let U((i(;)(t”/,xk) be a d-tensor (distinguished tensor, in brief) on the 1-jet space

JYT, M), and let F : T x M — R be a smooth function. We further consider
the quadratic multi-time Lagrangians L : JY(T, M) — R, of the form

(2.1) L=G @, aM)alad + UG (0, 2%)al, + P, 2"),
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whose fundamental vertical metrical d-tensor
1 0°L
Gy (05a") = 55—

)G 2 9xi, 0y
is symmetric, of rank n = dim M and has a constant signature with respect to the
indices 7 and j. By using a semi-Riemannian metric h = (hap(t?)), g1 on 7" and
by considering the canonical Kronecker h-regular vertical metrical d-tensor attached
to the Lagrangian function (2.1), given by

«@ 1 o v
g(Z )gf)( x) 5h ﬂ(tﬂ/) (t”)G(“)((J) 7,z )

where p = dim T, we then consider the pair

GL<J) (Jl(T M) g(a)él)i ( k) = haﬁ(t’wgij(t’y,mk),)

which is a generalized multi-time Lagrange space, whose spatial metrical d-tensor is
given by the formula

1 L) (V
(2.2) 9is(1,0) =~ hun ()G (1,2

Definition 2.1. We call the space GL(J) the canonical generalized multi-time La-
grange space associated with the quadratic Lagrangian function given by (2.1).

In order to construct the main Riemann-Lagrange geometric objects of the space
GL(J), i.e., its d-linear connection, torsions and curvatures, one needs a nonlinear

connection I' = (M((;)) ﬁ,N((a))j) on JY(T,M). The fundamental vertical metrical d-

tensor g( ))(3 (t7,2%) = hB(#7)g;; (¢, 2%), where g;; is given by (2.2), produces the
following natural nonlinear connection [6, p. 88]:
gim agjm
2 ot
where H op are the Christoffel symbols of the temporal semi-Riemannian metric hqg,

. 09jr  Ogxr  Ogjr
i woamy I J _ J
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are the generalized Christoffel symbols of the spatial metric g;;(¢”, z*). Let

(5 (5 8 o4 7 7 *
{m%axa} C X (JYT,M)) and {dt* da’ ézl} C X* (JN(T, M))

be the adapted bases of the nonlinear connection I', where !

0 _ 9 e 0 8 9 g 0

gte  ote (B)aﬁ’ Sxt Ozt (B)i@’

i g @ qtf + NO
ox, = dx, + M, gdt N(a)]dx]

IThroughout the rest of the paper, the constructed geometrical objects will be expressed in local
adapted components with respect to previous adapted bases.
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3 The Riemann-Lagrange geometry of the space GL(J)

We further adopt the formalism introduced and developed in core seminal research
studies ([1],[6],[5]), and accordingly provide the main results of the Riemann-Lagrange
geometry of the generalized multi-time Lagrange space GL(.J).

Theorem 3.1 (the Cartan linear connection). The canonical Cartan linear connec-

tion of the space GL(J) is given by its adapted components

_ k i i i(y) _
CT = (Hgﬂ,Gﬂ,ij =T, 00 = 0) ,

gkm 6gmj
2 otv

Proof. The formulas which describe the adapted coefficients of the Cartan canonical
connection are given by

ok G Sgm; g™ Ogm; rio_ gm <5gjm OGkm 5gjk> _ 1

Eo_
where Gm =

T2 sty 2 oty IR T o\ gz Sxi dxm gk

y g™ <8gjm OGem 8gjk> —0
) -

O
Remark 3.1. The generalized Cartan canonical connection CT of the space GL(J)

satisfies the metricity conditions

hap/y = haplk = haﬂ@; =0,  Gij/y = Gijik = gz‘j\EZ; =0,
where 7,7, 7 ;" and 7 |EZ;” are the local covariant derivatives produced by the
Cartan connection CT.

”

Theorem 3.2. The generalized multi-time Lagrange space GL(J) is characterized by
the following adapted torsion d-tensors:

p(8) (8) p(m) (8) aN((W)L)’
m m m m m ) Brm
Toi==Gjar PGy =Gy =0 Py = o) 0uLij =0,

oM
(m) (B) _ (1) B m mryB __ B m
P —We_5iGm 4 smHE, = 565G

Wel) = 57 e
3xﬁ
(m) (m) (m) (m)
g Mipa My oy OMgpa N,
(n)ap S5th ot (n)ag Sxd ot
(m) (m)
my _ Ny NG,

(m)(@)(B) _ sapm(B) o8 rm(a) _
W)if = 5 5 0 CwoGm = %wCiG) —WuCe =0

Using the general formulas from [6], which provide the curvature d-tensors of a
generalized multi-time Lagrange space, we obtain the following result:
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Theorem 3.3. The generalized multi-time Lagrange space GL(J) is characterized by
the following adapted curvature d-tensors:

Ha _ aH”(YMB _ 8H7?V + H'u Hoz _ H,u «
8y T gy otB nB Ty Nyt pbe
0G! oG
[ _ i3 Y m ol i yall
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4 (Generalized multi-time field theories on the space
GL(J)
4.1 Multi-time gravitational field

The fundamental vertical metrical d-tensor of the space GL(J) naturally induces the
multi-time gravitational h-potential G, defined by

G = hopdt® @ dt’ + g;jda* @ da? + h*P ;02 ® 5x?3.

We postulate that the generalized Einstein-like equations corresponding to the multi-
time gravitational h-potential of the space GL(J), are of the form

(4.1) Ric(CT) — Sc(fr)

G=KT,

where Ric(CT') represents the Ricci d-tensor associated with the generalized Cartan
connection, Sc¢(CT) is the scalar curvature, K is the Einstein curvature scalar and 7
is the stress-energy d-tensor of matter.

Using now the general formulas from [6], we infer the following;:

Proposition 4.1. The Ricci d-tensor Ric(CT) of the space GL(J) has the following
adapted components:

Rap = Hap = H";,, R\%) = P = _p" () —q,

apw gy = ity = ~Fim(y)
(@) _ pla) _ pm (a) _ (@) _ pla) _ pm (a) _
Riy; = Fay; = Fijmy =0 Biays = Foyp = Pigmy =0,
(@)(8) . o(@)(B) _ qm(B)(a) _ C om o om
Ry =Swu) = Sigym) =0 Bia = RBign,  Rij = Rijy,.

Corollary 4.2. The scalar curvature Sc(CT) of the space GL(J) is given by
Sc(CT) = H + R,
where H = h“BHaﬂ and R = ginij.
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Then we can state the main result of the generalized Riemann-Lagrange geometry
of the multi-time gravitational field:

Theorem 4.3. The global generalized Einstein-like equations (4.1) of the space GL(J)
have the local form

Hog — 2 = KT

Rij — #9@‘ = KT

-= > ety = KT
0="Tair  Ria=KTia, 0=T.)
0=T O=T  0=T,

where T ap, A,B € {oz, i ES)} are the adapted components of the stress-energy d-

tensor T.

4.2 The multi-time electromagnetism

The multi-time electromagnetic theory of the space GL(J) relies on the metrical
deflection d-tensors

D) = [olgier] = 120

Pl = 2 o

(@®) _ [ ] ((9)_pas
Ay [(i)(m)xuhurh gij-

This yields the electromagnetic-like 2-form of the space GL(J), via:

(a (@)(B) 5 i j
F=F, 535 Adx]+f( ) dxy, N by,

where

Lip@ _ pe] _ 11k (@)(8)
o= 3 [Py~ D] =0 oy = [dm(a) —dige | =0
Since F' = 0, we infer that the multi-time electromagnetic theory of the space GL(J)
is formally trivial.
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