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1 Introduction

In this paper, we study of the existence of weak positive solutions for the following
sublinear Kirchhoff parabolic systems

(1.1)



−A
(∫
Ω

|∇u|2 dx
)
△u+ ut = λ1u

a + µ1v
b in QT = Ω× [0, T ] ,

−B
(∫
Ω

|∇u|2 dx
)
△v + vt = λ2u

c + µ2v
d in QT = Ω× [0, T ] ,

u = v = 0 on ∂QT ,

u (x, 0) = φ (x) ,

where Ω ⊂ RN (N ≥ 3) is a bounded smooth domain with C2 boundary ∂Ω, and
A, B :R+ → R+ are continuous functions, λ1, λ2, µ1, and µ2 are positive parameters,
where a + c < 1 and b + d < 1. The peculiarity of this type of problem, and by
far the most important, is that it is not local. This is based on the presence of

the operator −A
(∫
Ω

|∇u|2 dx
)
△u (resp. −B

(∫
Ω

|∇u|2 dx
)
△u), which contains an

integral on all the field, implies that the equation is not a specific identity. It is
clear that these problems contribute to the transition from academia to application.
Indeed, very popular for its physical motivations, the problem (1.1) is none other than
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a stationary version of the model which regulates the behavior of elastic whose ends
are fixed and which is subjected to non-linear vibrations

utt −M

(∫
Ω

|∇u|2 dx
)
△u = h (x, u) , in Ω× (0, T ) ,

u = 0, in ∂Ω× (0, T ) ,

u (x, 0) = u0 (x) , ut (x, 0) = u1 (x) ,

where T is a positive constant, u0, u1 are given functions. In such problems, u
expresses the displacement, h (x, u) the extreme force, M (r) = a1r+ b1, b1 the initial
tension, and a1 relates to the intrinsic properties of the wire material (such as the
Young’s modulus). For more details, see [21], as well as their references. Basically,
this is a generalization to larger dimensions of the model originally proposed in one
dimension by Kirchhoff [16] in (1883)

(1.2)
∂2u

∂t2
−

ρ0 + ρ1

L∫
0

∣∣∣∣∂u∂x
∣∣∣∣2 dx

 ∂u

∂x
= 0,

where ρ0 is the initial tension, ρ1 represents the Young’s modulus of the material
of the wire and L its length. The latter is known to be an extension of the equation
of D’Alembert waves.

By using Euler time scheme on (1), we obtain the following problems

uk − τ ′A

(∫
Ω

|∇uk|2 dx
)
△uk = τ ′

[
λ1u

a
k + µ1v

b
k

]
+ uk−1 in Ω,

vk − τ ′B

(∫
Ω

|∇u|2 dx
)
△v = τ ′

[
λ2u

c
k + µ2v

d
k

]
+ vk−1in Ω,

uk = vk = 0 on ∂Ω,

u0 = ς,

where Nτ ′ = T, 0 < τ ′ < 1, and for 1 ≤ k ≤ N.
Indeed, Kirchhoff took into account the changes caused by transverse oscillations

along the length of the wire. With their implications in other disciplines, and given the
breadth of their fields of application, non-local problems will be used to model several
physical phenomena, they also intervene in biological systems or describe a process
dependent on its average, such as particle density. population. Moreover, With this
significant impact strengthening the field of applications, this type of problem has
caught the interest of mathematicians and a lot of work on the existence of solutions
has emerged. Particularly after the coup de force provided by the famous Lions
article [21], where the latter has adopted an approach based on functional analysis.
Nevertheless, in most of these articles, the benefit method is purely topological. It
is only in the last decades that this approach has been removed from variational
methods when Alves and his colleagues ([1]) obtained for the first time the results of
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their existence through these methods. Since then, a very fruitful development has
given rise to many works based on this advantageous axis, see ([21]).

Motivated by the ideas of [15], which the authors considered a system (1.1) in the
case A (t) = B (t) = 1. More precisely, under suitable conditions on f, g, we shall
show that system (1.1) has a positive solution for λ > λ∗ large enough. In current
paper, motivated by previous works in ([5] and [15]), we discuss the existence of weak
positive solution for sublinear Kirchhoff elliptic systems in bounded domains by using
subs-upersolutions method combined with comparison principle see (Lemma 2.1 in
[1]).

The outline of the paper is as follows. In the second section, we give some as-
sumptions and definitions related to problem (1.1). In section 3, we prove our main
result.

2 Assumptions and definitions

Let us assume the following assumption:
(H1) Assume that A,B : R+ → R+ are two continuous and increasing functions

and there exists ai, bi > 0, i = 1, 2, such that

a1 ≤ A (t) ≤ a2, b1 ≤ B (t) ≤ b2 for all t ∈ R+,

(H2) Suppose that a, d ≥ 0, b, c > 0, a+ c < 1 and b+ d < 1.
Now, in order to discuss our main result of problem (1.1), we need the following

two definitions:

Definition 2.1. Let (uk, vk) ∈
(
H1

0 (Ω)×H1
0 (Ω)

)
, (uk, vk) is said a weak solution

of (1.1) if it satisfies

A
(
∥uk∥2

) ∫
Ω

∇uk∇ϕdx =
∫
Ω

[
λ1u

a
k + µ1v

b
k − uk−uk−1

τ ′

]
ϕdx in Ω,

B
(
∥vk∥2

) ∫
Ω

∇vk∇ψdx =
∫
Ω

[
λ2u

c
k + µ2v

d
k − vk−vk−1

τ ′

]
ψdx in Ω

for all (ϕ, ψ) ∈
(
H1

0 (Ω)×H1
0 (Ω)

)
.

Definition 2.2. A pair of nonnegative functions (uk, vk) , (uk, vk) in
(
H1

0 (Ω)×H1
0 (Ω)

)
are called a weak subsolution and supersolution of (1.1) if they satisfy (uk, vk) =
(uk, vk) = (0, 0) on ∂Ω

A
(
∥uk∥2

) ∫
Ω

∇uk∇ϕdx ≤
∫
Ω

[
λ1u

a
k + µ1v

b
k − uk−uk−1

τ ′

]
ϕdx in Ω,

B
(
∥vk∥2

) ∫
Ω

∇vk∇ψdx ≤
∫
Ω

[
λ2u

c
k + µ2v

d
k − vk−vk−1

τ ′

]
ψdx in Ω

and
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A
(
∥uk∥2

) ∫
Ω

∇uk∇ϕdx ≥
∫
Ω

[
λ1u

a
k + µ1v

b
k − uk−uk−1

τ ′

]
ϕdx in Ω,

B
(
∥vk∥2

) ∫
Ω

∇vk∇ψdx ≥
∫
Ω

[
λ2u

c
k + µ2v

d
k − vk−vk−1

τ ′

]
ψdx in Ω

for all (ϕ, ψ) ∈
(
H1

0 (Ω)×H1
0 (Ω)

)
.

Lemma 2.1. ([1])Assume that M : R+ → R+ is a continuous and nonincreasing
function satisfying

(2.1) M (s) > m0, for all s ≥ s0,

where m0 is a positive constant and assume that u, v are two non-negative functions
such that

(2.2)


−M

(
∥u∥2

)
△u ≥ −M

(
∥v∥2

)
△v in Ω,

u = v = 0 on ∂Ω,

then u ≥ v a.e. in Ω.

3 Main Result

In this section, we shall state and prove the main result of this paper.

Theorem 3.1. Suppose that (H1)− (H2)hold, and M is a nonincreasing function
satisfying (2.1). Then problem (1.1) has a large positive weak solution for each positive
parameters λ1, λ2, µ1, and µ2.

Proof of Theorem 1. Let σ be the first eigenvalue of −△ with Dirichlet boundary
conditions and ϕ1 the corresponding eigenfunction with ∥ϕ1∥ = 1.satisfying

ϕ1 > 0 in Ω and |∇ϕ1| > 0 on ∂Ω.

Since bc < (1− a) (1− d) , we can take k such that

(2.4)
c

1− d
< ρ <

b

1− a
.

We shall verify that (uk, vk) =
(
εϕ21, ε

ρϕ21
)
is a subsolution of problem (1.1), where

ε > 0 is small and specified later.
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A simple calculation

A
(
∥uk∥

2
)∫

Ω

∇uk.∇ϕdx = 2εA
(
∥uk∥

2
)∫

Ω

ϕ1∇ϕ1.∇ϕdx

= 2εA
(
∥uk∥

2
)
×

∫
Ω

∇ϕ1∇ (ϕ1.ϕ) dx−
∫
Ω

|∇ϕ1|2 ϕdx


= 2εA

(
∥uk∥

2
)∫

Ω

(
σϕ21 − |∇ϕ1|2

)
ϕdx

≤ 2a2ε

∫
Ω

(
σϕ21 − |∇ϕ1|2

)
ϕdx.

Similarly,

B
(
∥vk∥

2
)∫

Ω

∇vk.∇ψdx = 2ερB
(
∥vk∥

2
)∫

Ω

(
σϕ21 − |∇ϕ1|2

)
ϕdx

≤ 2b2ε
ρ

∫
Ω

(
σϕ21 − |∇ϕ1|2

)
ϕdx.

Let η > 0, µ > 0 be such that

(2.5) σϕ21 − |∇ϕ1|2 ≤ 0, x ∈ Ωη,

and µ ≤ ϕ1 ≤ 1 on Ω\Ωη where Ωη = {x ∈ Ω : d (x, ∂Ω) ≤ η} .
We have from (2.5) that

(2.6) A

∫
Ωη

|∇uk|
2
dx

∫
Ωη

∇uk.∇ϕdx ≤ 0 ≤
∫
Ω

[
λ1u

a
k + µ1v

b
k − uk − uk−1

τ ′

]
ϕdx,

and

(2.7) B

∫
Ωη

|∇vk|
2
dx

∫
Ωη

∇vk.∇ψdx ≤ 0 ≤
∫
Ω

[
λ2u

c
k + µ2v

d
k − vk − vk−1

τ ′

]
ψdx.

On the other hand, in Ω\Ωη, let

r1 =
1− a

c
, r2 =

1− a

1− a− c
,

s1 =
1− d

b
, s2 =

1− d

1− d− b
.
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Note that

1

r1
+

1

r2
= 1,

1

s1
+

1

s2
= 1.

We have from (2.4) that

1− a

r1
− kb

r2
≥ 1− a− kb > 0,

k

(
1− d

s2

)
− c

s1
≥ k (1− d)− c > 0.

Thus we choose ε > 0 such that

2a2ε
1− a

r1
− kb

r2 σϕ21 ≤ λ
1
r1
1 µ

1
r2
1 µ2+aδ, x ∈ Ω\Ωη,

2b2ε
ρ
(
1− d

s2

)
− c

s1 σϕ21 ≤ λ
1
s1
2 µ

1
s2
2 µ2+γd, x ∈ Ω\Ωη,

where δ = 2
1−a , γ = 2

1−d . Furthermore

aδr1 =
2a

1− a− c
≥ 2a,

γds2 =
2d

1− d− b
≥ 2d

and

2s1 = 2

(
1− d

b

)
> 2

(
c

1− a

)
≥ 2c,

2r2 = 2

(
1− a

c

)
> 2

(
b

1− d

)
≥ 2b.

These relations and Young inequality show that

(2.8)

2a2ε
∫

Ω\Ωη

(
σϕ21 − |∇ϕ1|2

)
ϕdx ≤ 2a2ε

∫
Ω\Ωη

σϕ21.ϕdx

≤
∫

Ω\Ωη

(
λ

1
r1
1 ε

a
r1 µaδ

)(
µ

1
r2
1 ε

ρb
r2 µ2

)
ϕdx

≤
∫

Ω\Ωη


(
λ

1
r1
1 ε

a
r1 µaδ

)r1

r1
+

(
µ

1
r2
1 ε

ρb
r2 µ2

)r2

r2

ϕdx
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≤
∫

Ω\Ωη

[(
λ

1
r1
1 ε

a
r1 µaδ

)r1

+

(
µ

1
r2
1 ε

ρb
r2 µ2

)r2]
ϕdx

=

∫
Ω\Ωη

(
λ1ε

aµaδr1 + µ1ε
ρbµ2r2

)
ϕdx

≤
∫

Ω\Ωη

(
λ1ε

aϕ2a1 + µ1ε
ρbϕ2b1

)
ϕdx

=

∫
Ω\Ωη

(
λ1u

a
k + µ1v

b
k

)
ϕ dx

≤
∫
Ω

[
λ1u

a
k + µ1v

b
k − uk − uk−1

τ ′

]
ϕdx(3.1)

and

(2.9)

2b2ε
ρ

∫
Ω\Ωη

(
σϕ21 − |∇ϕ1|2

)
ψ dx ≤ 2b2ε

ρ
∫

Ω\Ωη

σϕ21.ψ dx

≤
∫

Ω\Ωη

(
λ

1
s1
2 ε

c
s1 µ2

)(
µ

1
s2
2 ε

ρd
s2 µγd

)
ψ dx

≤
∫

Ω\Ωη


(
λ

1
s1
2 ε

c
s1 µ2

)s1

s1
+

(
µ

1
s2
2 ε

ρd
s2 µγd

)s2

s2

ψ dx

≤
∫

Ω\Ωη

[(
λ

1
s1
2 ε

c
s1 µ2

)s1

+

(
µ

1
s2
2 ε

ρd
s2 µγd

)s2]
ψ dx

=

∫
Ω\Ωη

(
λ2ε

cµ2s1 + µ2ε
ρdµγds2

)
ψ dx

≤
∫

Ω\Ωη

(
λ2ε

cµ2c + µ2ε
ρdµ2d

)
ψ dx

≤
∫

Ω\Ωη

(
λ2ε

cϕ2c1 + µ2ε
ρdϕ2d1

)
ψ dx

=

∫
Ω\Ωη

(
λ2u

c
k + µ2v

d
k

)
ψ dx

≤
∫
Ω

[
λ2u

c
k + µ2v

d
k − vk − vk−1

τ ′

]
ψdx.(3.2)
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Hence from (2.6) , (2.7) , (2.8) and (2.9), it follows that

(2.10)

A

(∫
Ω

|∇uk|
2
dx

)∫
Ωη

∇uk∇ϕdx+
∫

Ω\Ωη

∇uk∇ϕdx


= A

(∫
Ω

|∇uk|
2
dx

)∫
Ω

∇uk∇ϕdx ≤
∫
Ω

[
λ1u

a
k + µ1v

b
k − uk−uk−1

τ ′

]
ϕdx,

and

(2.11)

B

(∫
Ω

|∇vk|
2
dx

)∫
Ωη

∇vk∇ψdx+
∫

Ω\Ωη

∇vk∇ψdx


= B

(∫
Ω

|∇vk|
2
dx

)∫
Ω

∇vk∇ψdx ≤
∫
Ω

[
λ2u

c
k + µ2v

d
k − vk−vk−1

τ ′

]
ψdx..

Then, by (2.10) and (2.11), (u, v) is a subsolution of (1.1) .

Next We shall construct a supersolution of problem (1.1). Let ω be the solution
of the following problem

(2.12)

 −△e = 1 in Ω,

e = 0 on ∂Ω.

Let

uk = C1e, vk = C2e,

where e is given by (2.12) and C1, C2 > 0 are a large positive real number to be
chosen later. We shall verify that (uk, vk) is a supersolution of problem (1.1). Let
ϕ ∈ H1

0 (Ω) with ϕ ≥ 0 in Ω. Then we obtain from (2.12) and the condition (H1) that

A

∫
Ω

|∇uk|2 dx

∫
Ω

∇uk.∇ϕdx = A

∫
Ω

|∇uk|2 dx

C1

∫
Ω

∇e.∇ϕdx

= A

∫
Ω

|∇uk|2 dx

C1

∫
Ω

ϕdx

≥ a1C1

∫
Ω

ϕdx
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and

B

∫
Ω

|∇vk|2 dx

∫
Ω

∇vk.∇ψdx = B

∫
Ω

|∇vk|2 dx

C2

∫
Ω

∇e.∇ψdx

= B

∫
Ω

|∇vk|2 dx

C2

∫
Ω

ψdx

≥ b1C2

∫
Ω

ψdx.

Let l = ∥e∥∞ . Since a < 1, d < 1, these imply that there exist positive large
constants α = a1C1, β = b1C2 such that

α ≥ λ1 (αl)
a
+ µ1 (βl)

b
,

β ≥ λ2 (αl)
c
+ µ2 (βl)

d
.

Thus

(2.13)

a1C1

∫
Ω

ϕdx ≥
∫
Ω

(
λ1u

a
k + µ1v

b
k

)
ϕdx

≥
∫
Ω

(
λ1u

a
k + µ1v

b
k

)
ϕdx−

∫
Ω

uk−uk−1

τ ′ ϕdx

and

b1C2

∫
Ω

ψdx ≥
∫
Ω

(
λ2u

c
k + µ2vk

d
)
ϕdx

≥
∫
Ω

(
λ2u

c
k + µ2vk

d
)
ϕdx−

∫
Ω

vk − vk−1

τ ′
ϕdx

From (2.12) and (2.13) we have (u, v) is a subsolution of problem (1.1) with u

k ≤ u kand vk ≤ vk for C1, C2 large.
In order to obtain a weak solution of problem (1.1) we shall use the arguments

by Azzouz and Bensedik [5]. For this purpose, we define a sequence {(un, vn)} ⊂(
H1

0 (Ω)×H1
0 (Ω)

)
as follows: u0 := u, v0 = v and (un, vn) is the unique solution of

the system

(2.14)



−A
(∫
Ω

|∇un|2 dx
)
△un = λ1u

a
n−1 + µ1v

b
n−1 − uk−uk−1

τ ′ in Ω,

−B
(∫
Ω

|∇vn|2 dx
)
△vn = λ2u

c
n−1 + µ2v

d
n−1 −

vk−vk−1

τ ′ in Ω,

un = vn = 0 on ∂Ω.



Sublinear Kirchhoff parabolic systems with multiple parameters 61

Problem (2.14) is (A,B)−linear in the sense that, if (un−1, vn−1) ∈
(
H1

0 (Ω)×H1
0 (Ω)

)
is a given, the right hand sides of (2.14) is independent of un, vn.

Set A (t) = tA
(
t2
)
, B (t) = tB

(
t2
)
. Then since A (R) = R, B (R) = R,

f (un−1) = uan−1, h (vn−1) = vbn−1, g (un−1) = ucn−1, and τ (vn−1) = vdn−1 ∈ L2 (Ω)
we deduce from a result in [1] that system (2.14) has a unique solution (un, vn) ∈(

H1
0 (Ω)×H1

0 (Ω)
)
.

By using (2.14) and the fact that (u0, v0) is a supersolution of (1.1), we have


−A

(∫
Ω

|∇u0|2 dx
)
△u0 ≥ λ1u

a
0 + µ1v

b
0 −

uk−uk−1

τ ′ = −A
(∫
Ω

|∇u1|2 dx
)
△u1,

−B
(∫
Ω

|∇v0|2 dx
)
△v0 ≥ λ2u

c
0 + µ2v

d
0 − vk−vk−1

τ ′ = −B
(∫
Ω

|∇v1| dx
)
△v1

and by Lemma 1, u0 ≥ u1 and v0 ≥ v1. Also, since u0 ≥ u, v0 ≥ v and the
monotonicity of f, h, g, and τ one has

−A

∫
Ω

|∇u1|2 dx

△u1 = λ1u
a
0 + µ1v

b
0 −

uk − uk−1

τ ′

≥ λ1u
a + µ1v

b − uk − uk−1

τ ′
≥ −A

∫
Ω

|∇u|2 dx

△u,

−B

∫
Ω

|∇v1|2 dx

△v1 = λ2u
c
0 + µ2v

d
0 − vk − vk−1

τ ′

≥ λ2u
c + µ2v

d − vk − vk−1

τ ′
≥ −B

∫
Ω

|∇v|2 dx

△v

from which, according to Lemma 1, u1 ≥ u, v1 ≥ v. for u2, v2 we write

−A

∫
Ω

|∇u1|2 dx

△u1 = λ1u
a
0 + µ1v

b
0 −

uk − uk−1

τ ′

≥ λ1u
a
1 + µ1v

b
1 −

uk − uk−1

τ ′
= −A

∫
Ω

|∇u2|2 dx

△u2,

−B

∫
Ω

|∇v1| dx

△v1 = λ2u
c
0 + µ2v

d
0 − vk − vk−1

τ ′

≥ λ2u
c
1 + µ2v

d
1 − vk − vk−1

τ ′
= −B

∫
Ω

|∇v2|2 dx

△v2
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and then u1 ≥ u2, v1 ≥ v2. Similarly, u2 ≥ u and v2 ≥ v because

−A

∫
Ω

|∇u2|2 dx

△u2 = λ1u
a
0 + µ1v

b
0 −

uk − uk−1

τ ′

≥ λ1u
a + µ1v

b − uk − uk−1

τ ′
≥ −A

∫
Ω

|∇u|2 dx

△u,

−B

∫
Ω

|∇v2|2 dx

△v2 = λ2u
c
1 + µ2v

d
1 − vk − vk−1

τ ′

≥ λ2u
c + µ2v

d − vk − vk−1

τ ′
≥ −B

∫
Ω

|∇v|2 dx

△v.

Repeating this argument we get a bounded monotone sequence {(un, vn)} ⊂(
H1

0 (Ω)×H1
0 (Ω)

)
satisfying

(2.15) u = u0 ≥ u1 ≥ u2 ≥ ... ≥ un ≥ ... ≥ u > 0,

(2.16) v = v0 ≥ v1 ≥ v2 ≥ ... ≥ vn ≥ ... ≥ v > 0.

Using the continuity of the functions f, h, g, and τ and the definition of the
sequences {un} , {vn} ,there exist constants Ci > 0, i = 1, ..., 4 independent of n such
that

(2.17) |f (vn−1)| ≤ C1, |h (un−1)| ≤ C2, |g (un−1)| ≤ C3

and
|τ (un−1)| ≤ C4 for all n.

From (2.17), multiplying the first equation of (2.14) by un, integrating, using the
Holder inequality and Sobolev embedding we can show that

a1

∫
Ω

|∇un|2 dx ≤ A

∫
Ω

|∇un|2 dx

∫
Ω

|∇un|2 dx

= λ1f (vn−1)undx+ µ1

∫
Ω

h (un−1)undx−
∫
Ω

uk − uk−1

τ ′
undx

≤ λ1

∫
Ω

|f (vn−1)| |un| dx+ µ1

∫
Ω

|h (un−1)| |un| dx−
∫
Ω

uk − uk−1

τ ′
|un| dx

≤ C1λ1

∫
Ω

|un| dx+ C2µ1

∫
Ω

|un| dx−
∫
Ω

uk − uk−1

τ ′
|un| dx

≤ C5 ∥un∥H1
0 (Ω)
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or

(2.18) ∥un∥H1
0 (Ω) ≤ C5, ∀n,

where C5 > 0 is a constant independent of n. Similarly, there exist C6 > 0 inde-
pendent of n such that

(2.19) ∥vn∥H1
0 (Ω) ≤ C6, ∀n.

From (2.18) and (2.19), we infer that {(un, vn)} has a subsequence which weakly
converges in H1

0

(
Ω,R2

)
to a limit (u, v) with the properties u ≥ u > 0 and v ≥ v > 0.

Being monotone and also using a standard regularity argument, {(un, vn)} converges
itself to (u, v) . Now, letting n → +∞ in (2.14), we deduce that (u, v) is a positive
solution of system (1.1). The proof of theorem is now completed. �
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