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Abstract. We generalized the concepts in probability of Wijsman rough
lacunary statistical by introducing the interval numbers of Weierstrass
of fractional order, where α is a proper fraction and γ = (γmnk) is any
fixed sequence of nonzero real or complex numbers. We study some prop-
erties of this operator involving Wijsman rough lacunary sequence θ of
interval numbers and arbitrary sequence p = (prst) of strictly positive
real numbers and investigate the topological structures of related six di-
mensional triple geometric difference sequence spaces of interval numbers.
In this study, we consider a generalization for Weierstrass rough six di-
mensional triple geometric difference sequence of these metric spaces by
taking a ψ function, satisfying the following conditions. Let ψm,n,k be a
positive function for all m,n, k ∈ N such that (i) limm,n,k→∞ ψmnk = 0,
(ii) ∆3ψmnk = ψmnk − ψm,n+1,k − ψm,n,k+1 + ψm,n+1,k+1 − ψm+1,n,k +
ψm+1,n+1,k + ψm+1,n,k+1 − ψm+1,n+1,k+1 ≥ 0. or ψmnk = 1. Therefore,
according to class of functions which satisfying the conditions (i) and (ii)
with metric spaces of six dimensional triple geometric difference sequence
spaces of interval numbers defined by a Musielak-Orlicz function.
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1 Introduction

The theory of statistical convergence has been discussed in trigonometric series,
summability theory, measure theory, turnpike theory, approximation theory, fuzzy set
theory and so on.

The idea of rough convergence was introduced by Phu [14], who also introduced the
concepts of rough limit points and roughness degree. The idea of rough convergence
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occurs very naturally in numerical analysis and has interesting applications. Aytar
[15] extended the idea of rough convergence into rough statistical convergence using
the notion of natural density just as usual convergence was extended to statistical
convergence. Pal et al. [16] extended the notion of rough convergence using the
concept of ideals which automatically extends the earlier notions of rough convergence
and rough statistical convergence.

Let (X, ρ) be a metric space. For any non empty closed subsets A,Amnk ⊂
X (m,n, k ∈ N), we say that the triple sequence (Amnk) is Wijsman statistical conver-
gent to A is the triple sequence (d (A,Amnk)) is statistically convergent to d (A,A),
i.e., for ϵ > 0 and for each A ∈ X

lim
rst

1

rst
|{m ≤ r, n ≤ s, k ≤ t : |d (A,Amnk)− d (A,A)| ≥ ϵ}| = 0.

In this case, we write St − limmnk Amnk = A or Amnk −→ A (WS). The triple
sequence (Amnk) is bounded if supmnk d (A,Amnk) <∞ for each A ∈ X.

In this paper, we introduce the notion of Wijsman rough statistical convergence of
triple sequences. Defining the set of Wijsman rough statistical limit points of a triple
sequence, we obtain to Wijsman statistical convergence criteria associated with this
set. Later, we prove that this set of Wijsman statistical cluster points and the set of
Wijsman rough statistical limit points of a triple sequence.

A triple sequence (real or complex) can be defined as a function x : N×N×N →
R (C), where N, R and C denote the set of natural numbers, real numbers and complex
numbers respectively. The different types of notions of triple sequence was introduced
and investigated at the initial by Sahiner et al. [11, 12], Esi et al. [1, 2, 3, 4], Dutta
et al. [5], Subramanian et al. [13], Debnath et al. [6], Savas and Esi. [10] and many
others.

A triple sequence x = (xmnk) is said to be triple analytic if

sup
m,n,k

|xmnk|
1

m+n+k <∞.

The space of all triple analytic sequences are usually denoted by Λ3. A triple
sequence x = (xmnk) is called triple chi sequence if

((m+ n+ k)! |xmnk|)
1

m+n+k → 0 as m,n, k → ∞.

A set of consisting of a closed interval of real numbers x such that a ≤ x ≤ b
is called an interval number. A real interval can also be considered as a set. Thus
we can investigate some properties of interval numbers, for instance arithmetic prop-
erties or analytical properties. We denote the set of all real valued closed inter-
vals by R3. Any elements of R3 is a closed interval and denoted by Ā. That is
Ā =

{
x ∈ R3 : a ≤ x ≤ b

}
. An interval number Ā is closed subset of real numbers. Let

xr and xs be first and last points of Ā interval numbers respectively. For Ā, B̄ ∈ R3,
we have

Ā = B̄ ⇐⇒ x1r = x2r, x1s = x2s, Ā+ B̄ =
{
x ∈ R3 : x1r + x2r ≤ x ≤ x1s + x2s

}
,

and if α ≥ 0, then
αĀ =

{
x ∈ R3 : αx1r ≤ x ≤ αx1s

}
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and if α < 0, then
αĀ =

{
x ∈ R3 : αx1r ≤ x ≤ αx1s

}
,

Ā · B̄ = {min {x1r · x2r, x1r · x2s, x1s · x2r, x1s · x2s} ≤ x

≤ max {x1r · x2r, x1r · x2s, x1s · x2r, x1s · x2s}} .

The set of all interval numbers R3 is a complete metric space defined by

d
(
Ā, B̄

)
= max {|x1r − x2r| , |x1s − x2s|} .

In the special case Ā = [a, a] and B̄ = [b, b], we obtain usual metric of R3. Recently
sequence spaces of interval numbers are studied by several authors, for example one
may refer to Esi and Catalbaş [17], Esi [18], Esi [19, 20, 21, 22, 23, 24] and Esi et
al. [25, 26, 27].

Let X and Y be two nonempty subsets of the space w of complex sequences. Let

A =
(
aijℓmnk

)
, (m,n, k = 1, 2, 3, . . .) be an six dimensional infinite matrix of complex

numbers. We write Ax = (A (x)) if

(1.1) A (x) =
∞∑
m=1

∞∑
n=1

∞∑
k=1

aijℓmnkxmnk

converges. If x = (xmnk) ∈ X ⇒ Ax = (A (x)) ∈ Y . We say that A defines a matrix
transformation from X → Y and we denote it by A : X → Y .

In the area of non-Newtonian calculus pioneering work was carried out by Gross-
man and Katz which we call as multiplicative calculus. The operations of multi-
plicative calculus are called as multiplicative derivative and multiplicative integral
of different types of non-Newtonian calculi and its applications. An extension of
multiplicative calculus to functions of complex variables.

Now a days geometric calculus is an alternative to the usual calculus of Newton
and Leibnitz. It provides differentiation and integration tools based on multiplication
instead of addition. Almost all properties in Newtonian calculus has an analog in
multiplicative calculus. Generally speaking multiplicative caluculus is a methodology
that allows one to have a different look at problems which can be investigated via
calculus. In some cases, mainly problems of price elasticity, multiplicative growth etc.
the use of multiplicative calculus is advocated instead of a traditional Newtonian one.
Top know better about Non-Newtonian calculus, we must have idea about different
types of arithmetics and their generators.

1.1 α− generator and geometric real field

A generator is a one-to-one function whose domain is R (the set of all real numbers)
and range is a set A ⊂ R. Each generator generates exactly one arithmetic and
each arithmetic is generated by exactly one generator. For example, the identity
function generates classical arithmetic, and exponential function generates geometric
arithmetic. As a generator, we choose the function α such that whose basic algebraic
operations are defined as follows:

(i) α− addition x+ y = α
[
α−1 (x) + α−1 (y)

]
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(ii) α− subtraction x− y = α
[
α−1 (x)− α−1 (y)

]
(iii) α− multiplication x× y = α

[
α−1 (x)× α−1 (y)

]
(iv) α− division x/y = α

[
α−1 (x) /α−1 (y)

]
(v) α− order x < y ⇔ α−1 (x) < α−1 (y) for x, y ∈ A, where A is a range of the

function α.

If we choose exp as an α− generator defined by α (z) = Inz and α− arithmetic
turns out to geometric arithmetic

(i) α− addition x⊕y = α
[
α−1 (x) + α−1 (y)

]
= e[Inx+Iny] = x.y, geometric addition.

(ii) α− subtraction x ⊖ y = α
[
α−1 (x)− α−1 (y)

]
= e[Inx−Iny] = x ÷ y, y ̸= 0,

geometric subtraction.

(iii) α− multiplication x⊙ y = α
[
α−1 (x)× α−1 (y)

]
= e[Inx×Iny] = xIny, geometric

multiplication.

(iv) α− division x ⊘ y = α
[
α−1 (x) /α−1 (y)

]
= e[Inx÷Iny] = x

1
Iny , y ̸= 1 geometric

division.

Itis obvious that In (x) < In (y) if x < y for x, y ∈ R+. That is, x < y ⇔ α−1 (x) <
α−1 (y). So, with out loss of generality, we use x < y instead of the geometric order
x < y.

Defined the sets of geometric integers, geometric real numbers and geometric com-
plex numbers Z (G) ,R (G) and C (G) , respectively, as follows.

(i) Z (G) = {ex : x ∈ Z}.

(ii) R (G) = {ex : x ∈ R} = R+ \ {0}.

(iii) C (G) = {ez : z ∈ C} = C \ {0}.

Remark 1.1. (R (G) ,⊕,⊙) is a field with geometric zero 1 and geometric identity
e, since

(i) (R (G) ,⊕,⊙) is a geometric additive abelian group with geometric zero 1.

(ii) (R (G) \ 1,⊙) is a geometric multiplicative abelian group with geometric identity
e.

(iii) ⊙ is distributive over ⊕.

But (C (G) ,⊕,⊙) is not a field, however, geometric binary operation ⊙ is not
associative in C (G).
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1.2 Geometric limit

Geometric limit of a positive valued function defined in a positive interval is same
to the ordinary limit. Here, we defined geometric limit of a function with the help of
geometric arithmetic as follows:

A function f , which is positive in a given positive interval, is said to tend to the
limit l > 0 as x tends to a ∈ R, if, corresponding to any arbitrary chosen number
ϵ > 1 and r be a positive real number, however samml (but greater than 1), there
exists a positive number δ > 1, such that

1 < |f (x)⊖ l|G < ϵ

for all values of x for which 1 < |x⊖ a|G < δ. We write

G lim
x→a

f (x) = l or f (x)Gl.

Here,

|x⊖ a|G < δ ⇒
∣∣∣x
a

∣∣∣G < δ

⇒1

δ
<
x

a
< δ

⇒a

δ
< x < aδ.

Similarly |f (x)⊖ l|G < ϵ⇒ l
ϵ < f (x) < lϵ.

Thus, f (x)Gl. means that for any given positive real number ϵ > 1, no matter
however closer to 1, ∃ a finite number δ > 1 such that f (x)

(
l
ϵ , lϵ

)
for every x ∈

(
a
δ , aδ

)
.

It is to be note that lengths of the open intervals
(
a
δ , aδ

)
and

(
l
ϵ , lϵ

)
decreases as δ

and ϵ respectively decreases to 1, f (x) becomes closer and closer to l, as well as x
becomes closer and closer to a as δ decreases to 1. Hence, l is also the ordinary limit
of f (x) . i.e. f (x)Gl ⇒ f (x) → l.

In other words, we say that G− limit and ordinary limit are same for bipositive
functions whose functional values as well as arguments are positive in the given inter-
val only difference is that in geometric calculus we approach the limit geometrically,
but in ordinary calculus we approach the limit linearly.

A function f is said to rough tend to limit l as x tends to a from the left, if for
each ϵ > 1 and r be a positive number (however small), there exists δ > 1 such that

|f (x)⊖ l|G < r + ϵ when a
δ < x < a. In symbols, we then write

G lim
x→a

f (x) = l or f (a− 1) = l.

Similarly, a function f is said to rough tend to limit l as x tends to a from the
right, if for each ϵ > 1 (however small), there exists δ > 1 such that |f (x)⊖ l|G < r+ϵ
when a < x < aδ. In symbols, we then write

G lim
x→a+

f (x) = l or f (a+ 1) = l.

If f (x) is negative valued in a given interval, it will be said to rough tend to a
limit l < 0 if for ϵ > 1,∃δ > 1 such that f (x) ∈

(
lϵ, lϵ

)
whenever x ∈

(
a
δ , aδ

)
.
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1.3 Geometric continuity

A function f is said to be geometric continuous at x = a if

(i) f (a) i.e., the value of f (x) at x = a, is a definite number,

(ii) the geometric-limit of the function f (x) as xGa exists and is equal to f (a).

Alternatively, a function f is said to rough Geometric-continuous at x = a, if for
arbitrarily chosen ϵ > 1, however small, there exists a number δ > 1 such that

lim
x→a

f (x)

f (a)
= 1.

It is easy to prove that

w (G) = {(xmnk) : xmnk ∈ R (G) for all m,n, k ∈ N}

is a vector space over R (G) with respect to the algebraic operations ⊕ addition and
⊙ multiplication

⊕ :w (G)× w (G) → w (G)

(x, y) → x⊕ y = (xmnk)⊕ (ymnk) = (xmnkymnk)

⊙ :R (G)× w (G) → w (G)

(αy) → α⊙ y = α⊙ (ymnk) =
(
αInymnk

)
,

where x = (xmnk) , y = (ymnk) ∈ w (G).

2 Definitions and Preliminaries

Definition 2.1. An Orlicz function (see [7]) is a function M : [0,∞) → [0,∞)
which is continuous, non-decreasing and convex with M (0) = 0, M (x) > 0, for
x > 0 and M (x) → ∞ as x → ∞. If convexity of Orlicz function M is replaced by
M (x+ y) ≤M (x) +M (y), then this function is called modulus function.

Lindenstrauss and Tzafriri ([8]) used the idea of Orlicz function to construct Orlicz
sequence space.

A sequence g = (gmn) defined by

gmn (v) = sup {|v|u− (fmnk) (u) : u ≥ 0} ,m, n, k = 1, 2, . . .

is called the complementary function of a Musielak-Orlicz function f . For a given
Musielak-Orlicz function f, (see [9]) the Musielak-Orlicz sequence space tf is defined
as follows

tf =
{
x ∈ w3 : If (|xmnk|)1/m+n+k → 0asm,n, k → ∞

}
,

where If is a convex modular defined by

If (x) =
∞∑
m=1

∞∑
n=1

∞∑
k=1

fmnk (|xmnk|)1/m+n+k
, x = (xmnk) ∈ tf .



242 N. Subramanian, A. Esi and M. K. Ozdemir

We consider tf equipped with the Luxemburg metric

d (x, y) =

∞∑
m=1

∞∑
n=1

∞∑
k=1

fmnk

(
|xmnk − ymnk|1/m+n+k

mnk

)
.

3 Some new Wijsman rough six dimensional triple
geometric difference sequence spaces of Weier-
strass fractional order of lacunary statistical con-
vergence

Let Γ (α) denote the Euler gamma function of a real number α. Using the definition
Γ (α) can be expressed as an improper integral as follows: Γ (α) =

∫∞
0
e−xxα−1dx,

where α is a proper fraction. We have defined the generalized Weierstrass fractional
six dimensional triple geometric difference sequence spaces of operator

(3.1) Γαγ (G, x) =
e−γα

α

∞∑
m=1

∞∑
n=1

∞∑
k=1

{
aijℓmnk

(
1 +

α

mnk

)−1

e
α

mnk

}
G

∆xmnk, (α ∈ N) ,

where N is the set of complex numbers and γ denotes Euler-Mascheroni constant.
Now we determine the new classes of six dimensional triple geometric difference

sequence spaces Γαγ (G, x) as follows:

(3.2) Γαγ (G, x) =
{
x : (xmnk) ∈ w3 :

(
ΓαγG∆x

)
∈ X

}
,

where

Γαγ (G, x) =
e−γα

α

∞∑
m=1

∞∑
n=1

∞∑
k=1

{
aijℓmnk

(
1 +

α

mnk

)−1

e
α

mnk

}
G

∆xmnk, (α ∈ N)

and

X ∈ χ3Γ
fψ (G, x) = χ3

fψ

(
aijℓmnk∆

α
γxmnk

)
= µmnk

(
ΓαγG, x

)
=

ψmnk

[
fmnk

(
aijℓmnk

(
(m+ n+ k)!

∣∣Γαγ∆x∣∣G) 1
m+n+k

, 0̄

)]
.

Proposition 3.1. (i) For a proper fraction α, Γα :W ×W ×W →W ×W ×W
defined by equation of (3.1) is a linear operator.

(ii) For α, β > 0, Γα
(
Γβ (xmnk)

)
= Γα+β (xmnk) and Γα (Γ−α (xmnk)) = xmnk.

Proof. Omitted. �

Proposition 3.2. For a proper fraction α and Musielak-Orlicz function f , if χ3
fψ (G, x)

is a linear space, then χ
3Γαγ
fψ (G, x) is also a linear space.

Proof. Omitted. �
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Definition 3.1. The triple sequence θi,ℓ,j = {(mi, nℓ, kj)} is called triple lacunary if
there exist three increasing sequences of integers such that

m0 = 0, hi = mi −mi−1 → ∞ as i→ ∞

and
n0 = 0, hℓ = nℓ − nℓ−1 → ∞ as ℓ→ ∞,

k0 = 0, hj = kj − kj−1 → ∞ as j → ∞.

Let mi,ℓ,j = minℓkj , hi,ℓ,j = hihℓhj , and θi,ℓ,j is determine by

Ii,ℓ,j = {(m,n, k) : mi−1 < m < mi andnℓ−1 < n ≤ nℓ andkj−1 < k ≤ kj} ,

qi =
mi

mi−1
, qℓ =

nℓ
nℓ−1

, qj =
kj
kj−1

.

Definition 3.2. A triple sequence A = (Amnk) is said to be rough six dimensional
triple geometric difference sequence of interval numbers of Wijsman r− convergent to
A denoted by Amnk →r A, provided that

∀ϵ>0 ∃(mϵ, nϵ, kϵ)∈N3 :m≥mϵ, n≥nϵ, k≥kϵ ⇒G lim
rst

1
rst |{m ≤ r, n ≤ s,

k ≤ t : ψmnka
ijℓ
mnk |d (A,Amnk)− d (A,A)|G < r + ϵ

}
, ψ ∈ M

∣∣∣ = 0

The set

GLIM
rA =

{
L ∈ R3 : Amnk →r A

}
is called the Wijsman r− limit set of the triple sequences of interval numbers.

Definition 3.3. A rough six dimensional triple geometric difference sequence of inter-
val numbers A = (Amnk) is said to be Wijsman r− convergent if GLIM

rA ̸= ϕ. In this
case, r is called the Wijsman convergence degree of the triple sequence A = (Amnk).
For r = 0, we get the ordinary convergence.

Definition 3.4. A rough six dimensional triple geometric sequence of interval num-
bers (Amnk) is said to be Wijsman r− statistically convergent to A, denoted by
Amnk →rst A, provided that the set

G lim
rst

1

rst

∣∣∣{(m,n, k)∈N3 :ψmnka
ijℓ
mnk|d (A,Amnk)−d (A,A)|

G≥r+ϵ
}
, ψ∈M

∣∣∣ = 0

has natural density zero for every ϵ > 0, or equivalently, if the condition

st−G lim sup ψmnka
ijℓ
mnk |d (A,Amnk)− d (A,A)|G ≤ r

is satisfied.

In addition, we can write Amnk →rst A if and only if the inequality

G lim
rst

1

rst

∣∣∣{m ≤ r, n ≤ s, k ≤ t : ψmnka
ijℓ
mnk |d (A,Amnk)−

d (A,A)|G < r + ϵ
}∣∣∣ = 0
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holds for every ϵ > 0 and almost all (m,n, k). Here r is called the Wijsman rough-
ness of degree. If we take r = 0, then we obtain the ordinary Wijsman statistical
convergence of triple sequence.

In a similar fashion to the idea of classic Wijsman rough convergence, the idea of
Wijsman rough statistical convergence of a six dimensional triple geometric sequence
spaces can be interpreted as follows:

Assume that a rough six dimensional triple geometric difference sequences of in-
terval numbers of B = (Bmnk) is Wijsman statistically convergent and cannot be
measured or calculated exactly; one has to do with an approximated (or Wijsman
statistically approximated) triple sequence A = (Amnk) satisfying

ψmnka
ijℓ
mnk |d (A−B,Amnk)− d (A−B,A)|G ≤ r for all m,n, k

(or for almost all (m,n, k)), i.e.,

δ

(
G lim
rst

1

rst

∣∣∣{m ≤ r, n ≤ s, k ≤ t : ψmnka
ijℓ
mnk |d (A−B,Amnk)−

d (A−B,A)|G > r
}∣∣∣) = 0.

Then the rough six dimensional triple geometric difference sequences of interval num-
bers of x is not statistically convergent any more, but as the inclusion

G lim
rst

1

rst

{
ψmnka

ijℓ
mnk |d (B,Amnk)− d (B,A)| ≥ ϵ

}
⊇

G lim
rst

1

rst

{
ψmnka

ijℓ
mnk |d (A,Amnk)− d (A,A)|G ≥ r + ϵ

}
holds and we have

δ

(
G lim
rst

1

rst

∣∣∣{(m,n, k) ∈ N3 : |Bmnk − l|G ≥ r + ϵ
}∣∣∣) = 0,

i.e., we get

δ

(
G lim
rst

1

rst

∣∣∣{m ≤ r, n ≤ s, k ≤ t : ψmnka
ijℓ
mnk |d (A,Amnk)−

d (A,A)|G ≥ r + ϵ
}∣∣∣) = 0,

i.e., rough six dimensional triple geometric difference sequences of interval numbers
of x is Wijsman r− statistically convergent in the sense of definition 3.4.

In general, the Wijsman rough statistical limit of a triple geometric difference
sequences of interval numbers may not unique for the Wijsman roughness degree
r > 0. So we have to consider the so called Wijsman r− statistical limit set of
a rough six dimensional triple geometric difference sequence of interval numbers of
A = (Amnk), which is defined by

st−G LIMrAmnk =
{
L ∈ R : Amnk →rst A

}
.
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Definition 3.5. A rough six dimensional triple geometric difference sequence of in-
terval numbers (Amnk) is said to be Wijsman r− I convergent to A, if for every ϵ > 0
and for each A ∈ X,

A (x, ϵ) =
{
(m,n, k) ∈ N3 : ψmnka

ijℓ
mnk |d (A,Amnk)− d (A,A)|G ≥ r + ϵ

}
∈ I

Definition 3.6. A rough six dimensional triple geometric difference sequence of in-
terval numbers (Amnk) is said to be Wijsman r − I statistical convergent to A, if for
every ϵ > 0, δ > 0 and for each A ∈ X,{

(r, s, t) ∈ N3 :
1

rst

∣∣∣{(r, s, t) ≤ (m,n, k) : ψmnka
ijℓ
mnk |d (A,Amnk)−

d (A,A)|G ≥ r + ϵ
}∣∣∣ ≥ δ

}
∈ I.

In this case, we write Amnk →s(IW ) A.

Definition 3.7. Let θ be a lacunary sequence. A rough six dimensional triple geo-
metric difference sequence of interval numbers (Amnk) is said to be Wijsman strongly
r − I convergent to A, if for every ϵ > 0 and for each A ∈ X,(r, s, t) ∈ N3 :

1

hrst

∑
(m,n,k)∈Irst

ψmnka
ijℓ
mnk |d (A,Amnk)− d (A,A)|G ≥ r + ϵ

 ∈ I.

In this case, we write Amnk →Nθ(IW ) A.

Definition 3.8. Let α be a proper fraction,β be nonnegative real number, f be
an Musielak-Orlicz function and θ = {mrnskt}(rst)∈N

∪
0 be the six dimensional triple

geometric difference sequence of interval numbers of Wijsman rough lacunary sequence
spaces of

(
∆α
γd (A,Amnk)

)
is said to be ∆α

γ− Wijsman rough lacunary statistically
convergent to a number 0̄ if for any ϵ > 0,

G lim
rst→∞

1

hrst

∣∣∣{(m,n, k) ∈ Irst : ψmnka
ijℓ
mnk

[
fmnk

∣∣∆α
γ (d (A,Amnk)−

d (A,A)) , 0̄|G
]
≥ β + ϵ

}∣∣∣ = 0,

where

Ir,s,t = {(m,n, k) : mr−1 < m < mr andns−1 < n ≤ ns andkt−1 < k ≤ kt} ,

qr =
mr

mr−1
, qs =

ns
ns−1

, qt =
kt
kt−1

.

In this case write ∆α
γX →Sθ ∆α

γx.

Definition 3.9. If α be a proper fraction, β be nonnegative real number,f be an
Musielak-Orlicz function and θ = {mrnskt}(rst)∈N

∪
0 be the six dimensional triple

sequence of interval numbers of geometric difference sequence spaces of Wijsman
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rough lacunary. A number X is said to be ∆α
γ −Nθ− convergent to a real number 0̄

if for every ϵ > 0,

G lim
rst→∞

1

hrst

∑
m∈Ir

∑
n∈Is

∑
k∈It

ψmnka
ijℓ
mnk

[
fmnk

∣∣∆α
γ (d (A,Amnk)− d (A,A)) , 0̄

∣∣G] = 0.

In this case we write ∆α
γ (Amnk −A) →Nθ 0̄.

Definition 3.10. Let α be a proper fraction, β be nonnegative real number, f be
an Musielak-Orlicz function and arbitary sequence p = (prst) of strictly positive real
numbers. A six dimensional triple geometric difference sequence of interval numbers of
random variables is said to be ∆α

γ− Wijsman rough lacunary statistically convergent
in probability to ∆α

γX : W 3 → R3 with respect to the roughness of degree β if for
any ϵ, δ > 0,

G lim
rst→∞

1

hrst

∣∣∣{(m,n, k) ∈ Irst : P
([
ψmnka

ijℓ
mnk

(
fmnk

∣∣∆α
γ (d (A,Amnk)−

d (x,A))|G
)]prst

≥ β + ϵ
)
≥ δ
}∣∣∣ = 0

and we write ∆α
γ (Amnk −A) →SP

β 0̄. It will be denoted by βSPθ .

Definition 3.11. Let α be a proper fraction, β be nonnegative real number,f be
an Musielak-Orlicz function and arbitary sequence p = (prst) of strictly positive real
numbers. A six dimensional triple geometric difference sequence spaces of interval
numbers of random variables is said to be ∆α

γ− Wijsman rough Nθ− convergent in
probability to ∆α

γX : W 3 → R3 with respect to the roughness of degree β if for any
ϵ > 0,

G lim
rst→∞

1

hrst

∑
m∈Ir

∑
n∈Is

∑
k∈It

∣∣∣{P ([ψmnkaijℓmnk (fmnk ∣∣∆α
γ (d (A,Amnk)−

d (A,A))|G
)]prst

≥ β + ϵ
)}∣∣∣ = 0,

and we write ∆α
γAmnk →NPθ

β ∆α
γA. The class of all β−Nθ− convergent six dimensional

triple geometric difference sequence spaces of interval numbers of Wijsman rough
random variables in probability will be denoted by βNP

θ .

Definition 3.12. Let θ = {mrnskt}(rst)∈N
∪

0 be Wijsman rough lacunary six di-
mensional triple geometric difference sequence spaces of Wijsman rough lacunary
refinement of θ is a six dimensional triple geometric difference sequence of interval

numbers of Wijsman rough lacunary sequence spaces of θ
′
=
{
m

′

rn
′

sk
′

t

}
(rst)∈N

∪
0

satisfying θ = {mrnskt}(rst)∈N
∪

0 ⊂
{
m

′

rn
′

sk
′

t

}
(rst)∈N

∪
0
.

Note 3.13. Let f be an Musielak-Orlicz function, aijℓmnk be a six dimensional matrix
and ψmnk be a rough triple geometric difference sequence spaces of interval numbers
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such that∥∥χ3G
fψ, (d (x1) , d (x2) , . . . , d (xn−1))

∥∥
p
=

ψmnka
ijℓ
mnk

[
fmnk

(
∥µmnk (X) , (d (x1) , d (x2) , . . . , d (xn−1))∥p

)]
,

where µmnk (G,X) =

((
(m+ n+ k)!

∣∣Γαγ (d (A,Amnk)− d (A,A))
∣∣G)1/m+n+k

, 0̄

)
.

4 Main Results

In this section by using the operator Γαγ , we introduce some new six dimensional
triple difference sequence spaces involving Wijsman Weierstrass gamma function of
rough lacunary statistical and arbitrary sequence p = (prst) of strictly positive real
numbers, α be a proper fraction, β be nonnegative real number, f be an Musielak-
Orlicz function, aijℓmnk be six dimensional matrix and ψmnk be a rough triple geometric
sequence spaces involving Wijsman Weierstrass gamma function of interval numbers,
the following theorems are obtained:

Theorem 4.1. Let θ = {mrnskt}(rst)∈N
∪

0 be a rough six dimensional triple geomet-
ric difference lacunary statistical sequence. Then the followings are equivalent:

(i)
∥∥∥χ3G

fψ, (d (x1) , d (x2) , . . . , d (xn−1))
∥∥∥
p
is β− six dimensional triple geometric dif-

ference of Wijsman Weierstrass gamma function of rough lacunary statistically
convergent in probability to 0̄.

(ii)
∥∥∥(χ3G

fψ, d (x2) , . . . , d (xn−1)
)∥∥∥

p
is β −Nθ convergent in probability to 0̄.

Proof. (i)=⇒ (ii) First suppose that
∥∥∥χ3G

fψ, (d (x1) , d (x2) , . . . , d (xn−1))
∥∥∥
p
→SPθ
β 0̄.

Then we can write

1

hrst

∑
m∈Ir

∑
n∈Is

∑
k∈It

∣∣∣{P (∥∥∥ψmnkaijℓmnk [fmnk ((µmnk − µ)
(
Γαγ (G,X)

)
,

(d (x1) , d (x2) , . . . , d (xn−1))∥p
]
≥ β + ϵ

)}∣∣∣
=

1

hrst

∑
m∈Ir

∑
n∈Is

∑
k∈It,P

(∥∥∥∥ψmnkaijℓmnk
[
fmnk((µmnk−µ)(Γαγ (G,X)),(d(x1),d(x2),...,d(xn−1))∥

p

)]
≥β+ϵ

)
≥ δ

2∣∣∣{P (∥∥∥ψmnkaijℓmnk [fmnk ((µmnk − µ)
(
Γαγ (G,X)

)
,

(d (x1) , d (x2) , . . . , d (xn−1))∥p
)]

≥ β + ϵ
)}∣∣∣
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+
1

hrst

∑
m∈Ir

∑
n∈Is

∑
k∈It,P

(∥∥∥ψmnkaijℓmnk[fmnk((µmnk−µ)(Γαγ (G,X)),(d(x1),d(x2),...,d(xn−1))∥
p

)]
≥β+ϵ

)
< δ

2∣∣∣{P (∥∥∥ψmnkaijℓmnk [fmnk ((µmnk − µ)
(
Γαγ (G,X)

)
,
)

(d (x1) , d (x2) , . . . , d (xn−1))∥p
)]

≥ β + ϵ
)}∣∣∣

≤ 1

hrst

∣∣∣{P (∥∥∥ψmnkaijℓmnk [fmnk ((µmnk − µ)
(
∆α
γ (G,X)

)
,

(d (x1) , d (x2) , . . . , d (xn−1))∥p
)]

≥ β + ϵ
)
≥ δ

2

}∣∣∣∣+ δ

2
.

(ii)=⇒ (i) Next suppose that condition (ii) holds. Then∑
m∈Ir

∑
n∈Is

∑
k∈It

∣∣∣{P (∥∥∥ψmnkaijℓmnk [fmnk (((µmnk − µ)
(
Γαγ (G,X)

)
,

(d (x1) , d (x2) , . . . , d (xn−1))∥p
)]

≥ β + ϵ
)}∣∣∣

≥
∑
m∈Ir

∑
n∈Is

∑
k∈It

∣∣∣{P (∥∥∥ψmnkaijℓmnk [fmnk (µmnk (ΓαγX)− µ
(
Γαγ (G,X)

)
,

(d (x1) , d (x2) , . . . , d (xn−1))∥p
)]

≥ β + ϵ
)
≥ δ
}∣∣∣

≥ δ
∣∣∣{P (∥∥∥ψmnkaijℓmnk [fmnk ((µmnk − µ)

(
Γαγ (G,X)

)
,

(d (x1) , d (x2) , . . . , d (xn−1))∥p
)]

≥ β + ϵ
)
≥ δ
}∣∣∣ .

Therefore

1

δ

1

hrst

∑
m∈Ir

∑
n∈Is

∑
k∈It

∣∣∣{P (∥∥∥ψmnkaijℓmnk [fmnk (((µmnk − µ) Γαγ (G,X)
)
,

(d (x1) , d (x2) , . . . , d (xn−1))∥p
)]

≥ β + ϵ
)}∣∣∣

≥ 1

hrst

∣∣∣{P (∥∥∥ψmnkaijℓmnk [fmnk (((µmnk − µ) Γαγ (G,X)
)
,

(d (x1) , d (x2) , . . . , d (xn−1))∥p
)]

≥ β + ϵ
)
≥ δ
}∣∣∣ .

Hence
∥∥∥χ3G

fψ, (d (x1) , d (x2) , . . . , d (xn−1))
∥∥∥
p
→SPθ
β 0̄. �

Theorem 4.2. If
∥∥∥χ3(G,X)

fψ , (d (x1) , d (x2) , . . . , d (xn−1))
∥∥∥
p

→SPθ
β 0̄

and
∥∥∥χ3(G,Y )

fψ , (d (x1) , d (x2) , . . . , d (xn−1))
∥∥∥
p

→SPθ
β 0̄ then

P

(∣∣∣∣{∥∥∥χ3(G,X−Y )
fψ , 0̄

)
, (d (x1) , d (x2) , . . . , d (xn−1))

∥∥∥
p

∣∣∣∣ ≥ β + ϵ

)}
= 0̄.
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Proof. Consider
∥∥∥χ3(G,X)

fψ , (d (x1) , d (x2) , . . . , d (xn−1))
∥∥∥
p

→SPθ
β 0̄ and∥∥∥χ3(G,Y )

fψ , (d (x1) , d (x2) , . . . , d (xn−1))
∥∥∥
p
→SPθ
β 0̄. Then we can write

1

hrst

∑
m∈Ir

∑
n∈Is

∑
k∈It

∣∣∣{P (∥∥∥ψmnkaijℓmnk [fmnk (µmnk (Γαγ (G,X)− µ
(
Γαγ (G,Y )

))
,

(d (x1) , d (x2) , . . . , d (xn−1))∥p
)]

≥ β + ϵ
)}∣∣∣

=
1

hrst

∑
m∈Ir

∑
n∈Is

∑
k∈It,P

(∥∥∥∥ψmnkaijℓmnk
[
fmnk(µmnk(Γαγ (G,X)−µ(Γαγ (G,Y ))),(d(x1),d(x2),...,d(xn−1))∥

p

)]
≥β+ϵ

)
≥ δ

2∣∣∣{P (∥∥∥ψmnkaijℓmnk [fmnk (µmnk (Γαγ (G,X)− µ
(
Γαγ (G,Y )

))
,

(d (x1) , d (x2) , . . . , d (xn−1))∥p
)]

≥ β + ϵ
)}∣∣∣

+
1

hrst

∑
m∈Ir

∑
n∈Is

∑
k∈It,P

(∥∥∥∥ψmnkaijℓmnk
[
fmnk(µmnk(Γαγ (G,X)−µ(Γαγ (G,Y ))),(d(x1),d(x2),...,d(xn−1))∥

p

)]
≥β+ϵ

)
<δ

2∣∣∣{P (∥∥∥ψmnkaijℓmnk [fmnk (µmnk (Γαγ (G,X)− µ
(
∆α
γX
))
,
)

(d (x1) , d (x2) , . . . , d (xn−1))∥p
)]

≥ β + ϵ
)}∣∣∣

≤ 1

hrst

∣∣∣{P (∥∥∥ψmnkaijℓmnk [fmnk (µmnk (Γαγ (G,X)− µ
(
Γαγ (G,Y )

))
,

(d (x1) , d (x2) , . . . , d (xn−1))∥p
)]

≥ β + ϵ
)
≥ δ

2

}∣∣∣∣+ δ

2
.

Therefore

1

δ

1

hrst

∑
m∈Ir

∑
n∈Is

∑
k∈It

∣∣∣{P (∥∥∥ψmnkaijℓmnk [fmnk (µmnk (Γαγ (G,X)− µ
(
Γαγ (G,Y )

))
,

(d (x1) , d (x2) , . . . , d (xn−1))∥p
)]

≥ β + ϵ
)}∣∣∣

≥ 1

hrst

∣∣∣{P (∥∥∥ψmnkaijℓmnk [fmnk (µmnk (Γαγ (G,X)− µ
(
Γαγ (G,Y )

))
,

(d (x1) , d (x2) , . . . , d (xn−1))∥p
)]

≥ β + ϵ
)
≥ δ
}∣∣∣ .

Hence∥∥∥χ3(G,X−Y )
fψ

(
Γαγ (G,Xmnk)−Γαγ (G,Ymnk)

)
,(d (x1) , d (x2) , . . . , d (xn−1))

∥∥∥
p
→SPθ
β 0̄.

�
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Theorem 4.3. Let θ
′
=
{
m

′

rn
′

sk
′

t

}
(rst)∈N

∪
0
be a triple Wijsman Weierstrass gamma

function of rough lacunary refinement of the six dimensional triple geometric differ-
ence sequence of interval numbers of θ = {mrnskt}(rst)∈N

∪
0. Let hr = (mr−1,mr],

hs = (ns−1, ns], ht = (kt−1, hr], r, s, t = 1, 2, 3, . . .. If there exists a η > 0 such that
|hrst|
|Irst| > η for every hrst ⊆ Irst. Then

∥∥∥χ3(G,X)
fψ , (d (x1) , d (x2) , . . . , d (xn−1))

∥∥∥
p
→SPθ
β 0̄

=⇒
∥∥∥χ3(G,X)

fψ , (d (x1) , d (x2) , . . . , d (xn−1))
∥∥∥
p
→
SP
θ
′

β 0̄.

Proof. Let
∥∥∥χ3(G,X)

fψ , (d (x1) , d (x2) , . . . , d (xn−1))
∥∥∥
p
→SPθ
β 0̄ and ϵ, δ > 0. Therefore

lim
rst→∞

1

|Irst|

∣∣∣{P (∥∥∥ψmnkaijℓmnk [fmnk (µmnk (Γαγ (G,X)− µ
(
Γαγ (G,X)

))
,

(d (x1) , d (x2) , . . . , d (xn−1))∥p
)]

≥ β + ϵ
)
≥ δ
}∣∣∣ = 0.

For every hrst we can find Irst such that hrst ⊆ Irst. We obtain

1

|hrst|

∣∣∣{P (∥∥∥ψmnkaijℓmnk [fmnk (µmnk (Γαγ (G,X)− µ
(
Γαγ (G,X)

))
,

(d (x1) , d (x2) , . . . , d (xn−1))∥p
)]

≥ β + ϵ
)
≥ δ
}∣∣∣

=
|Irst|
|hrst|

1

|Irst|

∣∣∣{P (∥∥∥ψmnkaijℓmnk [fmnk (µmnk (Γαγ (G,X)− µ
(
Γαγ (G,X)

))
,

(d (x1) , d (x2) , . . . , d (xn−1))∥p
)]

≥ β + ϵ
)
≥ δ
}∣∣∣

≤ 1

η

1

|Irst|

∣∣∣{P (∥∥∥ψmnkaijℓmnk [fmnk (µmnk (Γαγ (G,X)− µ
(
Γαγ (G,X)

))
,

(d (x1) , d (x2) , . . . , d (xn−1))∥p
)]

≥ β + ϵ
)
≥ δ
}∣∣∣ .

�
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