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1 Introduction

Huang and Zhang [11] generalized the notion of metric spaces, replacing the real
numbers by an ordered Banach space and defined cone metric spaces. They have
proved Banach contraction mapping theorem and some other fixed point theorems
of contractive type mappings in cone metric spaces. Subsequently, Rezapour and
Hamlbarani [17], Ilic and Rakocevic [9], contributed some fixed point theorems for
contractive type mappings in cone metric spaces.
Let E be a real Banach space and P a subset of E. P is called a cone if and only if:
(i) P is closed, non-empty and P 6= {0},
(ii) ax + by ∈ P for all x, y ∈ P and non-negative real numbers a, b,
(iii) P ∩ (−P ) = {0}.

Given a cone P ⊂ E, we define a partial ordering ≤ on E with respect to P by
x ≤ y if and only if y − x ∈ P . We shall write x < y if x ≤ y and x 6= y; we shall
write x ¿ y if y − x ∈ intP , where intP denotes the interior of P . The cone P is
called normal if there is a number K > 0 such that for all x, y ∈ E,

0 ≤ x ≤ y implies ‖x‖ ≤ K‖y‖.(1.1)

The least positive number K satisfying the above is called the normal constant of P
[11]. The cone P is called regular if every increasing sequence which is bounded from
above is convergent. That is, if {xn}n≥1 is a sequence such that x1 ≤ x2 ≤ · · · ≤ y
for some y ∈ E, then there is x ∈ E such that limn→∞ ‖xn − x‖ = 0.

The cone P is regular if and only if every decreasing sequence which is bounded
from below is convergent. Rezapour and Hamlbarani [17] proved every regular cone
is normal and there are normal cone with normal constant M ≥ 1.
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Gahler [7, 8] introduced the notions of 2-metric space and Dhage [5, 6] defined
D-metric spaces as a generalization of metric spaces. In 2003, Zead Mustafa and
Brailey Sims[13] introduced a new structure of generalized metric spaces, which are
called G-metric spaces. Recently Aage and Salunke[2] generalized G-metric space by
replacing R by real Banach space in G-metric spaces. In 2007 Shaban Sedghi et al
[18] modify the D-metric space and defined D∗-metric spaces. Now in this paper we
generalized D∗-metric spaces by introducing generalized D∗-metric space by replacing
R by a real Banach space in D∗-metric spaces.

In the following we always suppose that E is a Banach space, P is a cone in E
with intP 6= {0} and ≤ is a partial ordering with respect to P .

The concept of generalized D∗-metric space is defined as follows

Definition 1.1. Let X be a non empty set. A generalized D∗-metric on X is a
function, D∗ : X3 → E, that satisfies the following conditions for all x, y, z, a ∈ X:
(1) D∗(x, y, z) ≥ 0,
(2) D∗(x, y, z) = 0 if and only if x = y = z,
(3) D∗(x, y, z) = D∗(p{x, y, z}), (symmetry) where p is a permutation function,
(4) D∗(x, y, z) ≤ D∗(x, y, a) + D∗(a, z, z),
Then the function D∗ is called a generalized D∗-metric and the pair (X, D∗) is called
a generalized D∗-metric space

Example 1.2. Let E = R2, P = {(x, y) ∈ E : x, y ≥ 0}, X = R and D∗ : X ×X ×
X → E defined by D∗(x, y, z) = (|x−y|+ |y−z|+ |x−z|, α(|x−y|+ |y−z|+ |x−z|)),
where α ≥ 0 is a constant. Then (X, D∗) is a generalized D∗- metric space.

Proposition 1.3. If (X, D∗) be generalized D∗ metric space, Then for all x, y, z ∈ X,
we have D∗(x, x, y) = D∗(x, y, y).

Proof. Let D∗(x, x, y) ≤ D∗(x, x, x) + D∗(x, y, y) = D∗(x, y, y) and similarly
D∗(y, y, x) ≤ D∗(y, y, y) + D∗(y, x, x) = D∗(y, x, x). Hence we have D∗(x, x, y) =
D∗(x, y, y). ¤

Definition 1.4. Let (X,D∗) be a generalized D∗- metric space. Let {xn} be a
sequence in X and x ∈ X. If for every c ∈ E with 0 ¿ c there is N such that for all
m,n > N , D∗(xm, xn, x) ¿ c, then {xn} is said to be convergent and {xn} converges
to x, and x is the limit of {xn}. We denote this by xn → x(n →∞).

Lemma 1.5. Let (X, D∗) be a generalized D∗- metric space, P be a normal cone with
normal constant K. Let {xn} be a sequence in X. Then {xn} converges to x if and
only if D∗(xm, xn, x) → 0 (m,n →∞).

Proof. Let {xn} be a sequence in generalized D∗-metric space X converge to
x ∈ X and ε > 0 be any number. Then for any c ∈ E, with 0 ¿ c there is a positive
integer N such that m, n > N implies

D∗(xm, xn, x) ¿ c ⇒ ‖D∗(xm, xn, x)‖ ≤ K‖c‖,

since 0 ≤ D∗(xm, xn, x) < c and K is normal constant. Choose c such that K‖c‖ < ε.
Then ‖D∗(xm, xn, x)‖ < ε for all m, n > N and hence D∗(xm, xn, x) → 0 as m,n →
∞.
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Conversely let D∗(xm, xn, x) → 0 as m,n →∞ (in P ⊂ E). So for any c ∈ E with
0 ¿ c (i.e. c ∈ intP ), we have ‖c‖ > 0, let r = dist(c, ∂P ) = inf{‖c − t‖ : t ∈ ∂P},
where ∂P denotes the boundary of P , for this given r, 0 < r ≤ ‖c‖, there exist a
positive integer N such that m,n > N implies that ‖G(xm, x,x)‖ < r

2 < ‖c‖ and for
any t ∈ ∂P ,

‖(c−D∗(xm, xn, x))− t‖ ≥ ‖c− t‖ − ‖D∗(xm, xn, x)‖ > r − r

2
=

r

2

which proves that c−D∗(xm, xn, x) ∈ intP i.e. G(xm, xn, x) ¿ c. ¤
Remark. If {un} is a sequence in P ⊂ E and un → u in E the u ∈ P as P is a closed
subset of E. From this un ≥ 0 ⇒ u ≥ 0. Thus if un ≤ vn in P then lim un ≤ lim vn,
provided limit exist.

Lemma 1.6. Let (X, D∗) be a generalized D∗-metric space then the following are
equivalent.
(i) {xn} is D∗-convergent to x.
(ii) D∗(xn, xn, x) → 0, as n →∞
(iii) D∗(xn, x, x) → 0, as n →∞.

Proof. (i) ⇒ (ii). by Lemma 1.5.
(ii) → (i). Assume (ii), i.e. D∗(xn, xn, x) → 0 as n → ∞ i.e. for every c ∈ E with
0 ¿ c there is N such that for all n > N , D∗(xn, xn, x) ¿ c/2,

D∗(xm, xn, x) ≤ D∗(xm, x, x) + D∗(x, xn, xn)
≤ D∗(x, xm, xm) + D∗(x,xn, xn)
¿ c for all m,n > N.

Hence {xn} is D∗-convergent to x.
(ii) ⇔ (iii). Assume (ii), i.e. D∗(xn, xn, x) → 0 as n → ∞ i.e. for every c ∈ E with
0 ¿ c there is N such that for all n > N , D∗(xn, xn, x) ¿ c,

D∗(xn, x, x) = D∗(x, xn, xn) = D∗(xn, xn, x) ¿ c.

Hence D∗(xn, x, x) → 0 as n →∞, since c is arbitrary.
(iii) ⇒ (ii). Assume that (iii) i.e. D∗(xn, x, x) → 0 as n → ∞. Then for any c ∈ E
with 0 ¿ c, there is an N such that n > N implies D∗(xn, x, x) ¿ c

2 . Hence m, n > N
gives D∗(xm, xn, x) ≤ D∗(xm, x, x)+D∗(x, xn, xn) ¿ c. Thus {xn} is D∗-convergent
to x. ¤
Lemma 1.7. Let (X, D∗) be a generalized D∗- metric space, P be a normal cone with
normal constant K. Let {xn} be a sequence in X. If {xn} converges to x and {xn}
converges to y, then x = y. That is the limit of {xn}, if exists, is unique.

Proof. For any c ∈ E with 0 ¿ c, there is N such that for all m,n > N ,
D∗(xm, xn, x) ¿ c. We have

0 ≤ D∗(x, x, y) ≤ D∗(x, x, xn) + D∗(xn, y, y)
= D∗(xn, xn, x) + D∗(xn, xn, y)
¿ 2c. for all n > N.

Hence ‖D∗(x, x, y)‖ ≤ 2K‖c‖. Since c is arbitrary, D∗(x, x, y) = 0, therefore x = y.¤
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Definition 1.8. Let (X,D∗) be a generalized D∗- metric space, {xn} be a sequence
in X. If for any c ∈ E with 0 ¿ c, there is N such that for all m,n, l > N ,
D∗(xm, xn, xl) ¿ c, then {xn} is called a Cauchy sequence in X.

Definition 1.9. Let (X, D∗) be a generalized D∗-metric space. If every Cauchy
sequence in X is convergent in X, then X is called a complete generalized D∗-metric
space.

Lemma 1.10. Let (X, D∗) be a generalized D∗-metric space, {xn} be a sequence in
X. If {xn} converges to x, then {xn} is a Cauchy sequence.

Proof. For any c ∈ E with 0 ¿ c, there is N such that for all m,n, l > N ,
D∗(xm, xn, x) ¿ c/2 and D∗(xl, xl, x) ¿ c/2. Hence

D∗(xm, xn, xl) ≤ D∗(xm, xn, x) + D∗(x, xl, xl) ≤ c.

Therefore {xn} is a Cauchy sequence. ¤
Lemma 1.11. Let (X, D∗) be a generalized D∗ metric space, P be a normal cone with
normal constant K. Let {xn} be a sequence in X. Then {xn} is a Cauchy sequence
if and only if D∗(xm, xn, xl) → 0 (m, n, l →∞).

Proof. Let {xn} be a Cauchy sequence in generalized D∗-metric space (X, D∗)
and ε > 0 be any real number. Then for any c ∈ E with 0 ¿ c, there exist a positive
integer N such that m, n, l > N implies D∗(xm, xn, xl) ¿ c ⇒ 0 ≤ D∗(xm, xn, xl) < c
i.e. ‖D∗(xm, xn, xl)‖ ≤ K‖c‖, where K is a normal constant of P in E. Choose c
such that K‖c‖ < ε. Then ‖D∗(xm, xn, xl)‖ < ε for all m,n, l > N , showing that
D∗(xm, xn, xl) → 0 as m, n, l →∞.

Conversely let D∗(xm, xn, xl) → 0 as m,n, l → ∞. For any c ∈ E with 0 ¿ c we
have K‖c‖ > 0 (‖c‖ > 0, as c = c − 0 ∈ IntP and K ≥ 1). For given K‖c‖ there is
a positive integer N such that m, n, l > N ⇒ ‖D∗(xm, xn, xl)‖ < K‖c‖. This proves
that D∗(xm, xn, xl) ¿ c for all m,n, l > N and hence {xn} is a Cauchy sequence. ¤
Definition 1.12. Let (X, D∗), (X ′, D′∗) be generalized D∗-metric spaces, then a
function f : X → X ′ is is said to be D∗-continuous at a point x ∈ X if and only if it
is D∗-sequentially continuous at x, that is, whenever {xn} is D∗-convergent to x we
have {fxn} is D∗-convergent to fx.

Lemma 1.13. Let (X, D∗) be a generalized D∗-metric space, P be a normal cone with
normal constant K. Let {xn}, {yn} and {zn} be three sequences in X and xn → x,
yn → y, zn → z (n →∞). Then D∗(xn, yn, zn) → D∗(x, y, z) (n →∞).

Proof. For every ε > 0, choose c ∈ E with 0 ¿ c and ‖c‖ <
ε

6K + 3
. From

xn → x,yn → y and zn → z, there is N such that for all n > N,D∗(xn, xnx) ¿ c,
D∗(yn, yn, y) ¿ c and D∗(zn, zn, z) ¿ c. We have

D∗(xn, yn, zn) ≤ D∗(xn, yn, z) + D∗(z, zn, zn) = D∗(z, xn, yn) + D∗(zn, zn, z)
≤ D∗(z, xn, y) + D∗(y, yn, yn) + D∗(zn, zn, z)
= D∗(y, z, xn) + D∗(yn, yn, y) + D∗(zn, zn, z)
≤ D∗(y, z, x) + D∗(x, xn, xn) + D∗(yn, yn, y) + D∗(zn, zn, z)
≤ 3c + D∗(x, y, z).
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Similarly, we infer D∗(x, y, z) ≤ D∗(xn, yn, zn) + 3c. Hence

0 ≤ D∗(x, y, z) + 3c−D∗(xn, yn, zn) ≤ 6c

and

‖D∗(xn, yn, zn)−D∗(x, y, z)‖ ≤ ‖D∗(x, y, z) + 3c−D∗(xn, yn, zn)‖+ ‖3c‖
≤ (6K + 3)‖c‖ < ε, for all n > N.

Therefore D∗(xn, yn, zn) → D∗(x, y, z) (n →∞). ¤
Remark. If xn → x in generalized D∗-metric space X, then every subsequence of
{xn} converges to x in X. Let {xkn

} be any subsequence of {xn} and xn → x in X
then D∗(xm, xn, x) → 0 as m,n → ∞ and also D∗(xkm

, xkn
, x) → 0 as m, n → ∞

since kn ≥ n for all n.

Definition 1.14. [10]Let f and g be self maps of a set X. If w = fx = gx for some
x in X, then x is called a coincidence point of f and g, and w is called a point of
coincidence of f and g.

Proposition 1.15. [3]Let f and g be weakly compatible self maps of a set X. If f
and g have a unique point of coincidence w = fx = gx, then w is the unique common
fixed point of f and g.

2 Main results

The first main result is

Theorem 2.1. Let (X,D∗) be generalized D∗-metric space, P be a normal cone with
normal constant K and let S, T : X → X, be two mappings which satisfy the following
conditions,
(i) T (X) ⊂ S(X) ,
(ii) T (X) or S(X) is complete, and
(iii)

D∗(Tx, Ty, Tz) ≤ aD∗(Sx, Sy, Sz) + bD∗(Sx, Tx, Tx) + cD∗(Sy, Ty, Ty)
+ dD∗(Sz, Tz, Tz)(2.1)

for all x, y, z ∈ X, where a, b, c, d ≥ 0, a + b + c + d < 1. Then S and T have a unique
point of coincidence in X. Moreover if S and T are weakly compatible, Then S and
T have a unique common fixed point.

Proof. Let x0 ∈ X be arbitrary, there exist x1 ∈ X such that Tx0 = Sx1, in this
way we have sequence {Sxn} with Txn−1 = Sxn. Then from the inequality (2.1), we
have

D∗(Sxn, Sxn+1, Sxn+1) = D∗(Txn−1, Txn, Txn)
≤ aD∗(Sxn−1, Sxn, Sxn) + bD∗(Sxn−1, Txn−1, Txn−1)

+ cD∗(Sxn, Txn, Txn) + dD∗(Sxn, Txn, Txn)
= aD∗(Sxn−1, Sxn, Sxn) + bD∗(Sxn−1, Sxn, Sxn)

+ cD∗(Sxn, Sxn+1, Sxn+1) + dD∗(Sxn, Sxn+1, Sxn+1)
= (a + b)D∗(Sxn−1, Sxn, Sxn) + (c + d)D∗(Sxn, Sxn+1, Sxn+1)
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This implies

D∗(Sxn, Sxn+1, Sxn+1) ≤ qD∗(Sxn−1, Sxn, Sxn)

where q = (a+b)
1−(c+d) , then 0 ≤ q < 1. By repeated application of above inequality we

have,

D∗(Sxn, Sxn+1, Sxn+1) ≤ qnD∗(Sx0, Sx1, Sx1)(2.2)

Then, for all n,m ∈ N,n < m we have by repeated use the rectangle inequality and
equality (2.2) that

D∗(Sxn, Sxm, Sxm) ≤ D∗(Sxn, Sxn, Sxn+1) + D∗(Sxn+1, Sxn+1, Sxn+2)
+ D∗(Sxn+2, Sxn+2, Sxn+3) + · · ·+ D∗(Sxm−1, Sxm−1, Sxm)

≤ D∗(Sxn, Sxn+1, Sxn+1) + D∗(Sxn+1, Sxn+2, Sxn+2)
+ D∗(Sxn+2, Sxn+3, Sxn+3) + · · ·+ D∗(Sxm−1, Sxm, Sxm)

≤ (qn + qn+1 + · · ·+ qm−1)D∗(Sx0, Sx1, Sx1)

≤ qn

1− q
D∗(Sx0, Sx1, Sx1).

From (1.1) we infer

‖D∗(Sxn, Sxm, Sxm)‖ ≤ qn

1− q
K‖D∗(Sx0, Sx1, Sx1)‖

which implies that D∗(Sxn, Sxm, Sxm) → 0, as n,m →∞, since
qn

1−q K‖D∗(Sx0, Sx1, Sx1)‖ → 0 as n,m →∞.
For n,m, l ∈ N, and

D∗(Txn, Sxm, Sxl) ≤ D∗(Sxn, Sxm, Sxm) + D∗(Sxm, Sxl, Sxl),

from (1.1)

‖D∗(Txn, Sxm, Sxl)‖ ≤ K[‖D∗(Sxn, Sxm, Sxm)‖+ ‖D∗(Sxm, Sxl, Sxl)‖]

taking limit as n,m, l →∞, we get D∗(Sxn, Sxm, Sxl) → 0. So {Sxn} is D∗-Cauchy
a sequence, since S(X) is D∗-complete, there exists u ∈ S(X) such that {Sxn} → u
as n →∞, there exist p ∈ X such that Sp = u. If T (X) is complete, then there exist
u ∈ T (X) such that Sxn → u, as T (X) ⊂ S(X), we have u ∈ S(X).Then there exist
p ∈ X such that Sp = u. We claim that Tp = u,

D∗(Tp, u, u) = D∗(Tp, Tp, u)
≤ D∗(Tp, Tp, Txn) + D∗(Txn, u, u)
≤ aD∗(Sp, Sp, Sxn)) + bD∗(Sp, Tp, Tp) + cD∗(Sp, Tp, Tp)

+ dD∗(Sxn, Txn, Txn) + D∗(Sxn+1, u, u)
≤ aD∗(u, u, Sxn) + bD∗(u, Tp, Tp) + cD∗(u, Tp, Tp)

+ dD∗(Sxn, Sxn+1, Sxn+1) + D∗(Sxn+1, u, u)
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This implies that

D∗(Tp, Tp, u) ≤ 1
1− (b + c)

{aD∗(u, u, Sxn) + dD∗(Sxn, Sxn+1, Sxn+)

+ D∗(Sxn+1, u, u)}
from (1.1)

‖D∗(Tp, Tp, u)‖ ≤ K
1

1− (b + c)
{a‖D∗(u, u, Sxn)‖+ d‖D∗(Sxn, Sxn+1, Sxn+1)‖

+ ‖D∗(Sxn+1, u, u)‖}
as n → ∞, right hand side approaches to zero. Hence ‖D∗(Tp, Tp, u)‖ = 0 and
Tp = u. i.e. Tp = Sp and p is a point of coincidence point of S and T . Now we show
that S and T have a unique point of coincidence. For this, assume that there exists
a point q inX such that Sq = Tq. Now

D∗(Tp, Tp, Tq) ≤ aD∗(Sp, Sp, Sq) + bD∗(Sp, Tp, Tp) + cD∗(Sp, Tp, Tp)
+ dD∗(Sq, Tq, T q)

= aD∗(Tp, Tp, Tq) + bD∗(Tp, Tp, Tp) + cD∗(Tp, Tp, Tp)
+ dD∗(Tq, Tq, T q)

= aD∗(Tp, Tp, Tq)

we have D∗(Tp, Tp, Tq) ≤ aD∗(Tp, Tp, Tq), i.e. (a − 1)D∗(Tp, Tp, Tq) ∈ P , but
(a− 1)D∗(Tp, Tp, Tq) ∈ −P , since k − 1 < 0. Hence (a− 1)D∗(Tp, Tp, Tq) = 0, this
implies that D∗(Tp, Tp, Tq) = 0 i.e. Tp = Tq. Thus p is a unique point of coincidence
of S and T . By Proposition 1.15, S and T have a unique common fixed point. ¤
Theorem 2.2. Let (X, D∗) be complete generalized D∗-metric spaces, P be a normal
cone with normal constant K and let T : X → X, be a mapping satisfies the following
conditions

D∗(Tx, Ty, Tz) ≤ aD∗(x, y, z) + bD∗(x, Tx, Tx)
+ cD∗(y, Ty, Ty) + dD∗(z, Tz, Tz)(2.3)

for all x, y, z ∈ X, where a, b, c, d ≥ 0, a + b + c + d < 1. Then T have a unique fixed
point in X.

Proof. The proof uses Theorem 2.1 by replacing S by identity mapping. ¤
Theorem 2.3. Let (X, D∗) be a generalized D∗-metric space, P be a normal cone
with normal constant K and let S and T , be two self mappings of X which satisfy the
following conditions
(i) T (X) ⊂ S(X) ,
(ii) T (X) or S(X) is D∗-complete,
(iii)

D∗(Tx, Ty, Tz) ≤ a[D∗(Sx, Ty, Ty) + D∗(Sy, Tx, Tx)]
+ b[D∗(Sy, Tz, Tz) + D∗(Sz, Ty, Ty)]
+ c[D∗(Sx, Tz, Tz) + D∗(Sz, Tx, Tx)]

(2.4)
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for all x, y, z ∈ X, where a, b, c ≥ 0, 2a + 2b + 2c < 1. Then S and T have a unique
point of coincidence in X. Moreover if S and T are weakly compatible, then S and T
have a unique common fixed point in X.

Proof. Let x0 ∈ X be arbitrary, there exist x1 ∈ X such that Tx0 = Sx1, in this
way we have sequence {Txn} with Txn = Sxn+1. Then from inequality (2.4), we
have

D∗(Sxn, Sxn+1,Sxn+1) = D∗(Txn−1, Txn, Txn)
≤ a[D∗(Sxn−1, Txn, Txn) + D∗(Sxn, Txn−1, Txn−1)]

+ b[D∗(Sxn, Txn, Txn) + D∗(Sxn, Txn, Txn)]
+ [D∗(Sxn−1, Txn, Txn) + D∗(Sxn, Txn−1, Txn−1)]

= a[D∗(Sxn−1, Sxn+1, Sxn+1) + D∗(Sxn, Sxn, Sxn)]
+ b[D∗(Sxn, Sxn+1, Sxn+1) + D∗(Sxn, Sxn+1, Sxn+1)]
+ c[D∗(Sxn−1, Sxn+1, Sxn+1) + D∗(Sxn, Sxn, Sxn)]

= (a + c)(D∗(Sxn−1, Sxn, Sxn) + D∗(Sxn, Sxn+1, Sxn+1))
+ 2bD∗(Sxn, Sxn+1, Sxn+1)},

This implies that

D∗(Sxn, Sxn+1, Sxn+1) ≤ qD∗(Sxn−1, Sxn, Sxn)

where q = (a+c)
1−(a+2b+c) , then 0 ≤ q < 1 and by repeated application of above inequality,

we have,

D∗(Sxn, Sxn+1, Sxn+1) ≤ qnD∗(Sx0, Sx1, Sx1).(2.5)

Then, for all n,m ∈ N, m < n, we have, by repeated use of the rectangle inequality,

D∗(Sxm, Sxn, Sxn) ≤ D∗(Sxm, Sxm+1, Sxm+1) + D∗(Sxm+1, Sxn, Sxn)

≤ D∗(Sxm, Sxm+1, Sxm+1) + D∗(Sxm+1, Sxm+2, Sxm+2)
+ D∗(Sxm+2, Sxn, Sxn)

≤ D∗(Sxm, Sxm+1, Sxm+1) + D∗(Sxm+1, Sxm+2, Sxm+2)
+ · · ·+ D∗(Sxn−1, Sxn, Sxn)

≤ (qm + qm+1 + · · ·+ qn−1)D∗(Sx0, Sx1, Sx1)

≤ qm

1− q
D∗(Sx0, Sx1, Sx1),

from (1.1)

‖D∗(Sxm, Sxn, Sxn)‖ ≤ qm

1− q
K‖D∗(Sx0, Sx1, Sx1)‖ → 0 as m, n →∞.

since 0 ≤ q < 1. So {Sxn} is D∗-Cauchy sequence. By the completeness of S(X),
there exists u ∈ S(X) such that {Sxn} is D∗-convergent to u. Then there is p ∈ X,
such that Sp = u. If T (X) is complete, then there exist u ∈ T (X) such that Sxn → u,



Some fixed points theorems in generalized D∗-metric spaces 9

as T (X) ⊂ S(X), we have u ∈ S(X).Then there exist p ∈ X such that Sp = u. We
claim that Tp = u,

D∗(Tp, Tp, u) ≤ D∗(Tp, Tp, Txn) + D∗(Txn, u, u)
≤ a[D∗(Sp, Tp, Tp) + D∗(Sp, Tp, Tp)]

+ b[D∗(Sp, Txn, Txn) + D∗(Sxn, Tp, Tp)]
+ c[D∗(Sp, Txn, Txn) + D∗(Sxn, Tp, Tp)] + D∗(Txn, u, u)

≤ a[D∗(u, Tp, Tp) + D∗(u, Tp, Tu))]
+ b[D∗(u, Sxn+1, Sxn+1, Sxn+1) + D∗(Tp, Tp, u) + D∗(u, Sxn, Sxn)]
+ c[D∗(u, Sxn+1, Sxn+1) + D∗(Tp, Tp, u) + D∗(u, Sxn, Sxn)]
+ D∗(Sxn+1, u, u)

This implies that

D∗(Tp, Tp, u) ≤ 1
1− (2a + b + c)

{
(b + c)[D∗(u, Sxn+1, Sxn+1) + D∗(u, Sxn, Sxn)]

+ D∗(Sxn+1, u, u)
}

from (1.1)

‖D∗(Tp, Tp, u)‖ ≤ K
1

1− (2a + b + c)
{
(b + c)[‖D∗(u, Sxn+1, Sxn+1)‖

+ ‖D∗(u, Sxn, Sxn)‖] + ‖D∗(Sxn+1, u, u)‖}

the right hand side approaches to zero as n → ∞. Hence ‖D∗(Tp, Tp, u)‖ = 0 and
Tp = u. Hence Tp = Sp and p is a point of coincidence point of S and T . Now we
show that S and T have a unique point of coincidence. For this, assume that there
exists a point q inX such that Sq = Tq. Now

D∗(Tp, Tp, Tq) ≤ a[D∗(Sp, Tp, Tp) + D∗(Sp, Tp, Tp)]
+ b[D∗(Sp, Tq, T q) + D∗(Sq, Tp, Tp)]
+ c[D∗(Sp, Tq, T q) + D∗(Sq, Tp, Tp)]

= a[D∗(Tp, Tp, Tp) + D∗(Tp, Tp, Tp)]
+ b[D∗(Tp, Tq, T q) + D∗(Tq, Tp, Tp)]
+ c[D∗(Tp, Tq, T q) + D∗(Tq, Tp, Tp)]

= b[D∗(Tp, Tp, Tq) + D∗(Tp, Tp, Tq)]
+ c[D∗(Tp, Tp, Tq) + D∗(Tp, Tp, Tq)]

= (2b + 2c)D∗(Tp, Tp, Tq)

D∗(Tp, Tp, Tq) ≤ (2b + 2c)D∗(Tp, Tp, Tq).

This implies ((2b+2c)−1)D∗(Tp, Tp, Tq) ∈ P and ((2b+2c)−1)D∗(Tp, Tp, Tq) ∈ −P ,
since (2b+2c)− 1 < 0. As P ∩−P = {0}, we have ((2b+2c)− 1)D∗(Tp, Tp, Tq) = 0,
i.e. D∗(Tp, Tp, Tq) = 0. Hence Tp = Tq. Also Sp = Sq, since Tp = Sp. Hence p is a
unique point of coincidence of S and T . By Proposition 1.15, p is a unique common
fixed point of S and T in X. ¤
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Corollary 2.4. Let (X, D∗) be a complete generalized D∗-metric space,P be a normal
cone with normal constant K and let T : X → X be a mappings satisfy the condition

D∗(Tx, Ty, Tz) ≤ a[D∗(x, Ty, Ty) + D∗(y, Tx, Tx)]
+ b[D∗(y, Tz, Tz) + D∗(z, Ty, Ty)]
+ c[D∗(x, Tz, Tz) + D∗(z, Tx, Tx)]

for all x, y, z ∈ X, where a, b, c ≥ 0, 2a+2b+2c < 1. Then T has a unique fixed point
in X.

Proof. The proof follows from Theorem 2.3 by replacing S by identity mapping.¤

Theorem 2.5. Let (X, D∗) be a generalized D∗-metric space, P be a normal cone
with normal constant K and let S, T : X → X be two mappings which satisfy, the
following conditions
(i) T (X) ⊂ S(X),
(ii) T (X) or S(X) is complete,
(iii)

D∗(Tx, Ty, Ty) ≤ a[D∗(Sy, Ty, Ty) + D∗(Sx, Ty, Ty)]
+ bD∗(Sy, Tx, Tx)(2.6)

for all x, y, z ∈ X, where a, b ≥ 0, 3a + b < 1, Then S and T have a unique point of
coincidence in X. Moreover if S and T are weakly compatible, then S and T have a
unique common fixed point.

Proof. Let x0 ∈ X be arbitrary, there exist x1 ∈ X such that Tx0 = Sx1, in this
way we have sequence {Txn} with Txn = Sxn+1. Then from inequality (2.6), we
have

D∗(Sxn,Sxn+1, Sxn+1) = D∗(Txn−1, Txn, Txn)
≤ a[D∗(Sxn, Txn, Txn) + D∗(Sxn−1, Txn, Txn)]

+ D∗(Sxn, Txn−1, Txn−1)
= a[D∗(Sxn, Sxn+1, Sxn+1) + D∗(Sxn−1, Sxn+1, Sxn+1)]

+ bD∗(Sxn, Sxn, Sxn)
≤ a[D∗(Sxn, Sxn+1, Sxn+1) + D∗(Sxn−1, Sxn, Sxn)

+ D∗(Sxn, Sxn+1, Sxn+1)]

This implies that

D∗(Sxn, Sxn+1, Sxn+1) ≤ rD∗(Sxn−1, Sxn, Sxn)(2.7)

where r = a
1−2a , then 0 ≤ r < 1. Then repeating application of (2.7), we get

D∗(Sxn, Sxn+1, Sxn+1) ≤ rnD∗(Sx0, Sx1, Sx1)
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Then, for all n,m ∈ N, n > m we have, by repeated use of the rectangle inequality,

D∗(Sxm, Sxn, Sxn) ≤ D∗(Sxm, Sxm+1, Sxm+1) + D∗(Sxm+1, Sxm+2, Sxm+2)
+ · · ·+ D∗(Sxn−1, Sxn, Sxn)

≤ (rm + rm+1 + · · ·+ rn−1)D∗(Sx0, Sx1, Sx1)

≤ rm

1− r
D∗(Sx0, Sx1, Sx1).

From (1.1)

‖D∗(Sxm, Sxn, Sxn)‖ ≤ rm

1− r
K‖D∗(Sx0, Sx1, Sx1)‖ → 0 as m,n →∞.

since 0 ≤ r < 1. So {Sxn} is D∗-Cauchy sequence. By the completeness of S(X),
there exists u ∈ S(X) such that {Sxn} is D∗-convergent to u. Then there is p ∈ X,
such that Sp = u. If T (X) is complete, then there exist u ∈ T (X) such that Sxn → u,
as T (X) ⊂ S(X), we have u ∈ S(X).Then there exists p ∈ X such that Sp = u. We
claim that Tp = u,

D∗(Tp, Tu, u) ≤ D∗(Tp, Tp, Sxn−1) + D∗(Sxn−1, u, u)
≤ a[D∗(Sp, Tp, Tp) + D∗(Sp, Tp, Tp)]

+ bD∗(Sp, Tp, Tp) + D∗(Sxn−1, u, u)
= a[D∗(u, Tp, Tp) + D∗(u, Tp, Tp)]

+ bD∗(u, Tp, Tp) + D∗(Sxn−1, u, u)
= a[D∗(Tp, Tp, u) + D∗(Tp, Tp, u)]

+ bD∗(Tp, Tp, u) + D∗(Sxn−1, u, u)

This implies that

D∗(Tp, u, u) ≤ 1
1− (2a + b)

D∗(Sxn−1, u, u)

from (1.1)

‖D∗(Tp, u, u)‖ ≤ K
1

1− (2a + b)
‖D∗(Sxn−1, u, u)‖

right hand side approaches to zero as n →∞. Hence ‖G∗(Tp, Tp, u)‖ = 0 and Tp = u
and Sp = Tp i.e. p is a coincidence point of S and T . Now we show that S and T
have a unique point of coincidence. For this, assume that there exists a point q inX
such that Sq = Tq. Now

D∗(Tp, Tq, T q) ≤ a[D∗(Sq, Tq, T q) + D∗(Sp, Tq, T q)] + bD∗(Sq, Tp, Tp)
= a[D∗(Tq, Tq, T q) + D∗(Tp, Tq, T q)] + bD∗(Tq, Tp, Tp)]
= aD∗(Tp, Tq, Tq) + bD∗(Tp, Tq, T q) = (a + b)D∗(Tp, Tq, T q).

This implies ((a + b) − 1)D∗(Tp, Tq, T q) ∈ P and ((a + b) − 1)D∗(Tp, Tq, T q) ∈
−P , since D∗(Tp, Tq, T q) ∈ P and (a + b) − 1 < 0. As P ∩ −P = {0}, we have
((a + b) − 1)D∗(Tp, Tq, T q) = 0, i.e. D∗(Tp, Tq, T q) = 0. Hence Tp = Tq. Also
Sp = Sq, since Sp = Tp. Hence p is a unique point of coincidence of S and T . By
Proposition 1.15, p is a unique common fixed point of S and T in X. ¤
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Corollary 2.6. Let (X, D∗) be a complete generalized D∗-metric space, P be a normal
cone with normal constant K and let T : X → X be a mapping which satisfies the
following condition,

D∗(Tx, Ty, Ty) ≤ a[D∗(y, Ty, Ty) + D∗(x, Ty, Ty)]
+ bD∗(y, Tx, Tx)](2.8)

for all x, y ∈ X, where a, b ≥ 0, 3a + b < 1, Then T has a unique fixed point in X.

Proof. The proof follows from the previous theorem and the same argument used
in corollary 2.4. ¤

Theorem 2.7. Let (X, D∗) be a generalized D∗-metric space, P be a normal cone
with normal constant K and let S, T : X → X, be two mappings which satisfy the
following conditions
(i) T (X) ⊂ S(X),
(ii) T (X) or S(X) is complete,
(iii)

D∗(Tx, Ty, Tz) ≤ a[D∗(Sz, Tx, Tx) + D∗(Sy, Tx, Tx)]
+ b[D∗(Sy, Tz, Tz) + D∗(Sx, Tz, Tz)]
+ c[D∗(Sx, Ty, Ty) + D∗(Sz, Ty, Ty)](2.9)

for all x, y, z ∈ X, where a, b, c ≥ 0, 3a + 2b + 3c < 1, Then S and T have a unique
point of coincidence in X. Moreover if S and T are weakly compatible, then S and T
have a unique common fixed point in X.

Proof. Setting z = y in condition (2.9), reduces it to condition (2.6), and the proof
follows from Theorem 2.5. ¤
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