On minimizing the norm of linear maps in C_p-classes

Messaoud Bounkhel

Abstract. In this paper we establish various characterizations of the global minimum of the map $F_\psi : U \to \mathbb{R}^+$ defined by $F_\psi(X) = \|\psi(X)\|_{p'}$, $(1 < p < \infty)$ where $\psi : U \to C_p$ is a map defined by $\psi(X) = S + \phi(X)$ and $\phi : B(H) \to B(H)$ is a linear map, $S \in C_p$, and $U = \{X \in B(H) : \phi(X) \in C_p\}$. Further, we apply these results to characterize the operators which are orthogonal to the range of elementary operators.

Key words: elementary operators, Schatten p-classes, orthogonality, φ-directional derivative.

1 Introduction

Let E be a complex Banach space. We recall ([2]) that $b \in E$ is orthogonal to $a \in E$ (in short $b \perp a$) if for all complex λ there holds $\|a + \lambda b\| \geq \|a\|$. Note that the order is important, that is, if b is orthogonal to a, then a need not be orthogonal to b. If E is a Hilbert space, then $b \perp a$ is equivalent to $\langle a, b \rangle = 0$, i.e., the orthogonality in the usual sense. Let now $B(H)$ denote the algebra of all bounded linear operators on a complex separable and infinite dimensional Hilbert space H and let $T \in B(H)$ be compact, and let $s_1(X) \geq s_2(X) \geq ... \geq 0$ denote the eigenvalues of $|T| = (T^*T)^{\frac{1}{2}}$ arranged in their decreasing order. The operator T is said to be belong to the Schatten p-classes C_p if

$$\|T\|_p = \left[\sum_{i=1}^{\infty} s_i(T)^p \right]^{\frac{1}{p}} = [\text{tr}|T|^p]^{\frac{1}{p}}, \quad 1 \leq p < \infty,$$

where tr denotes the trace functional. For the general theory of the Schatten p-classes the reader is referred to [11]. Recall (see [11]) that the norm $\|\cdot\|$ of the B-space V is said to be Gâteaux differentiable at non-zero elements $x \in V$ if there exists a unique support functional $D_x \in V^*$ such that $\|D_x\| = 1$ and $D_x(x) = \|x\|$ and satisfying

$$\lim_{R, t \to 0} \frac{\|x + ty\| - \|x\|}{t} = \text{Re} D_x(y).$$
On minimizing the norm of linear maps

for all \(y \in V \). Here \(\mathbb{R} \) denotes the set of all reals and \(\Re \) denotes the real part. The Gâteaux differentiability of the norm at \(x \) implies that \(x \) is a smooth point of the sphere of radius \(\| x \| \). It is well known (see [7] and the references therein) that for \(1 < p < \infty \), \(C_p \) is a uniformly convex Banach space. Therefore every non-zero \(T \in C_p \) is a smooth point and in this case the support functional of \(T \) is given by

\[
DT(X) = \text{tr} \left[\left(\frac{|T|^{p-1} UX^*}{\|T\|^{p-1}} \right) \right],
\]

for all \(X \in C_p \), where \(T = U |T| \) is the polar decomposition of \(T \). The first result concerning the orthogonality in a Banach space was given by Anderson [1] showing that if \(A \) is a normal operator on a Hilbert space \(H \), then \(AS = SA \) implies that for any bounded linear operator \(X \) there holds

\[
\| S + AX - XA \| \geq \| S \| .
\] (1.1)

This means that the range of the derivation \(\delta_A : B(H) \to B(H) \) defined by \(\delta_A(X) = AX - XA \) is orthogonal to its kernel. This result has been generalized in two directions: by extending the class of elementary mappings

\[
E : B(H) \to B(H); \quad E(X) = \sum_{i=1}^n A_i X B_i
\]

and

\[
\tilde{E} : B(H) \to B(H); \quad \tilde{E}(X) = \sum_{i=1}^n A_i X B_i - X,
\]

where \((A_1, A_2, \ldots A_n) \) and \((B_1, B_2, \ldots B_n) \) are \(n \)-tuples of bounded operators on \(H \), and by extending the inequality (1.1) to \(C_p \)-classes with \(1 < p < \infty \) see [4], [8]. The Gâteaux derivative concept was used in [3, 5, 7, 9, 10], in order to characterize those operators which are orthogonal to the range of a derivation. In these papers, the attention was directed to \(C_p \)-classes for some \(p \geq 1 \). The main purpose of this note is to characterize the global minimum of the map

\[
X \mapsto \| S + \phi(X) \|_{C_p}, \quad \phi \text{ is a linear map in } B(H),
\]

in \(C_p \) by using the \(\varphi \)-directional derivative. These results are then applied to characterize the operators \(S \in C_p \) which are orthogonal to the range of elementary operators. It is very interesting to point out that our Theorem 3.3 and its Corollary 3.2 generalize Theorem 1 in [9] and Lemma 2 in [3].

2 Preliminaries

Definition 2.1 Let \((X, \| \cdot \|)\) be an arbitrary Banach space and \(F : X \to \mathbb{R} \). We define the \(\varphi \)-directional derivative of \(F \) at a point \(x \in X \) in direction \(y \in X \) by

\[
D_\varphi F(x; y) = \lim_{t \to 0^+} \frac{F(x + te^{i\varphi}y) - F(x)}{t}.
\]
Note that when $\varphi = 0$ the φ-directional derivative of F at x in direction y coincides with the usual directional derivative of F at x in a direction y given by

$$(2.1) \quad DF(x; y) = \lim_{t \to 0^+} \frac{F(x + ty) - F(x)}{t}.$$

According to the notation given in [6] we will denote $D_\varphi F(x; y)$ for $F(x) = \|x\|$ by $D_\varphi,x(y)$ and for the same function we write $D_x(y)$ for $DF(x; y)$.

Remark 2.1 In [6] the author used the term φ-Gâteaux derivative instead of the term “φ-directional derivative” that we use here. It seems to us that the most appropriate term is the “φ-directional derivative”, because in the classical case when we don’t have φ, as in (2.1) the existence of this limit corresponds to the directional differentiability of F at x in the direction y, while the Gâteaux differentiability of F at x corresponds to the existence of the same limit in any direction $y \in E$ and moreover the function $y \mapsto DF(x; y)$ is linear and continuous. We note that the existence of $DF(x; y)$ for any $y \in E$ does not imply the Gâteaux differentiability of F at $x = 0$ does not exist.

We recall (see [8, Proposition 6]) that the function $y \mapsto D_{\varphi,x}(y)$ is subadditive and

$$(2.2) \quad |D_{\varphi,x}(y)| \leq \|y\|.$$

We end this section by recalling a necessary optimality condition in terms of φ-directional derivative for a minimization problem.

Theorem 2.1 ([10]) Let $(X, \|\cdot\|)$ be an arbitrary Banach space and $F : X \to \mathbb{R}$. If F has a global minimum at $v \in X$, then

$$\inf_{\varphi} D_{\varphi} F(v; y) \geq 0,$$

for all $y \in X$.

3 Main Results

Let $\phi : B(H) \to B(H)$ be a linear map, that is, $\phi(\alpha X + \beta Y) = \alpha \phi(X) + \beta \phi(Y)$, for all $\alpha, \beta \in \mathbb{C}$ and all $X, Y \in B(H)$, and let $S \in C_p (1 < p < \infty)$. Put

$$U = \{X \in B(H) : \phi(X) \in C_p\}.$$

Let $\psi : U \to C_p$ be defined by

$$\psi(X) = S + \phi(X).$$

Define the function $F_\psi : U \to \mathbb{R}^+$ by $F_\psi(X) = \|\psi(X)\|_{C_p}$. Now we are ready to prove our first result in C_p-classes ($1 < p < \infty$). It gives a necessary and sufficient optimality condition for minimizing F_ψ. The proof of this result follows, with slight modifications, the same lines of the proof of Theorem 3.1 in [10]. For the convenience of the reader we state it.
Theorem 3.1 The map F_ψ has a global minimum at $V \in U$ if and only if
\[
\inf_{\phi} D_{\phi,\psi}(\phi(Y)) \geq 0, \ \forall \ Y \in U.
\]

Proof. For the necessity we have just to combine Theorem 2.1 and the following equality which can be easily checked
\[
D_{\phi,\psi}(V, Y) = D_{\phi,\psi}(V)(\phi(Y)).
\]

Conversely, assume that (3.1) is satisfied. First, observe that
\[
D_{\phi,\psi}(V)(e^{i(\pi-\varphi)}\psi(V)) = \lim_{t \to 0^+} \left\| \psi(V) + te^{i\varphi}e^{i(\pi-\varphi)}\psi(V) \right\|_{C_p} - \left\| \psi(V) \right\|_{C_p} \cdot
\]
\[
= \lim_{t \to 0^+} \left(\frac{\left\| \psi(V) - t\psi(V) \right\|_{C_p} - \left\| \psi(V) \right\|_{C_p}}{t} \right) \cdot \frac{|1 - t| - 1}{t} = -\left\| \psi(V) \right\|_{C_p}.
\]

From this, we have
\[
\left\| \psi(V) \right\|_{C_p} = -D_{\phi,\psi}(V)(e^{i(\pi-\varphi)}\psi(V)).
\]

Let $Y \in U$ be arbitrary and put $\widetilde{Y} = -e^{i(\pi-\varphi)}Y + e^{i(\pi-\varphi)}V$. It is easy to see that $\widetilde{Y} \in U$. Then by (3.1) we have $D_{\phi,\psi}(V)(\phi(\widetilde{Y})) \geq 0$ and hence by the subadditivity of $D_{\phi,\psi}(V)(.)$ and the linearity of ϕ we get
\[
\left\| \psi(V) \right\|_{C_p} \leq -D_{\phi,\psi}(V)(e^{i(\pi-\varphi)}\psi(V)) + D_{\phi,\psi}(V)(\phi(\widetilde{Y}))
\]
\[
= D_{\phi,\psi}(V)(-e^{i(\pi-\varphi)}\phi(Y) + e^{i(\pi-\varphi)}\phi(V) - e^{i(\pi-\varphi)}S - e^{i(\pi-\varphi)}\phi(V))
\]
\[
= D_{\phi,\psi}(V)(-e^{i(\pi-\varphi)}\psi(Y)).
\]

By using (2.2) and since Y is arbitrary in U, we obtain
\[
F_\psi(V) = \left\| \psi(V) \right\|_{C_p} \leq D_{\phi,\psi}(V)(-e^{i(\pi-\varphi)}\psi(Y)) \leq \left\| \psi(Y) \right\|_{C_p} = F_\psi(Y), \text{ for all } Y \in U.
\]

Then F_ψ has a global minimum at V on U. \hfill \Box

Let us recall the following result proved in [9] for C_p-classes ($1 < p < \infty$).

Theorem 3.2 ([9]) Let $X, Y \in C_p$. Then, there holds
\[
D_X(Y) = p\text{Re} \left\{ \text{tr}(|X|^{p-1}U^*Y) \right\},
\]
where $X = U |X|$ is the polar decomposition of X.

The following corollary establishes a characterization of the φ-directional derivative of the norm in C_p-classes ($1 < p < \infty$).

Corollary 3.1 Let $X, Y \in C_p$. Then, one has

$$D_{\varphi,X}(Y) = pRe \left\{ e^{i\varphi}tr(|X|^{p-1}U^*Y) \right\},$$

for all φ, where $X = U |X|$ is the polar decomposition of X.

Proof. Let $X, Y \in C_p$. Put $\tilde{Y} = e^{i\varphi}Y$. Applying Theorem 3.2 with φ, X and \tilde{Y} we get

$$D_{\varphi,X}(Y) = \lim_{t \to 0^+} \frac{\|X + te^{i\varphi}Y\|_{C_p} - \|X\|_{C_p}}{t} = \lim_{t \to 0^+} \frac{\|X + t \tilde{Y}\|_{C_p} - \|X\|_{C_p}}{t} = D_X(\tilde{Y})$$

$$= pRe \left\{ tr(|X|^{p-1}U^* \tilde{Y}) \right\} = pRe \left\{ e^{i\varphi}tr(|X|^{p-1}U^*Y) \right\}.$$

This completes the proof. \square

Now we are going to characterize the global minimum of F_ψ on C_p ($1 < p < \infty$), when ϕ is a linear map satisfying the following useful condition:

$$(3.2) \quad tr(X \phi(Y)) = tr(\phi^*(X)Y), \forall X, Y \in C_p,$$

where ϕ^* is an appropriate conjugate of the linear map ϕ. We state some examples of ϕ and ϕ^* which satisfy the above condition (3.2).

1. The elementary operator $E : \mathbf{I} \to \mathbf{I}$ defined by

$$E(X) = \sum_{i=1}^{n} A_i X B_i,$$

where $A_i, B_i \in B(H)$ ($1 \leq i \leq n$) and \mathbf{I} is a separable ideal of compact operators in $B(H)$ associated with some unitarily invariant norm. In [8, Proposition 8] the author showed that the conjugate operator $E^* : \mathbf{I}^* \to \mathbf{I}^*$ of E has the form

$$E^*(X) = \sum_{i=1}^{n} B_i X A_i,$$

and that the operators E and E^* satisfy the condition (3.2).

2. Using the previous example we can check that the conjugate operator $\tilde{E} : \mathbf{I}^* \to \mathbf{I}^*$ of the elementary operator $\tilde{E} : \mathbf{I} \to \mathbf{I}$ defined by

$$\tilde{E}(X) = \sum_{i=1}^{n} A_i X B_i - X,$$
Now, we are in position to prove the following theorem.

Theorem 3.3 Let \(V \in C_p \), and let \(\psi(V) \) have the polar decomposition \(\psi(V) = U|\psi(V)| \). Then \(F_\psi \) has a global minimum on \(C_p \) at \(V \) if and only if \(U^*|\psi(V)| \in \ker \phi^* \).

Proof. Assume that \(F_\psi \) has a global minimum on \(C_p \) at \(V \). Then

\[
\inf_{\phi} D_{\phi,\psi(V)}(\phi(Y)) \geq 0,
\]

for all \(Y \in C_p \). That is,

\[
\inf_{\phi} pRe \left\{ e^{i\varphi} tr(|\psi(V)|^{p-1}U^*\phi(Y)) \right\} \geq 0, \forall Y \in C_p.
\]

This implies that

\[
tr(|\psi(V)|^{p-1}U^*\phi(Y)) = 0, \forall Y \in C_p.
\]

Let \(f \otimes g \), be the rank one operator defined by \(x \mapsto \langle x, f \rangle g \) where \(f, g \) are arbitrary vectors in the Hilbert space \(H \). Take \(Y = f \otimes g \), since the map \(\phi \) satisfies (3.2) one has

\[
tr(|\psi(V)|^{p-1}U^*\phi(Y)) = tr(\phi^* (U^*|\psi(V)|^{p-1})Y).
\]

Then (3.4) is equivalent to \(tr(\phi^* (U^*|\psi(V)|^{p-1})Y) = 0 \), for all \(Y \in C_p \), or equivalently

\[
\langle \phi^* (U^*|\psi(V)|^{p-1})g, f \rangle = 0, \forall f, g \in H.
\]

Thus \(\phi^* (U^*|\psi(V)|^{p-1}) = 0 \), i.e., \(U^*|\psi(V)|^{p-1} \in \ker \phi^* \).

Conversely, let \(\varphi \) be arbitrary. If \(U^*|\psi(V)|^{p-1} \in \ker \phi^* \), then \(e^{i\varphi} U^*|\psi(V)|^{p-1} \in \ker \phi^* \). It is easily seen (using the same arguments above) that

\[
Re \left\{ e^{i\varphi} tr(U^*|\psi(V)|^{p-1}\phi(Y)) \right\} \geq 0, \forall Y \in C_p.
\]

Now as \(\varphi \) is taken arbitrary, we get (3.3).

We state our first corollary of Theorem 3.3. Let \(\phi = \delta_{A,B} \), where \(\delta_{A,B} : B(H) \to B(H) \) is the generalized derivation defined by \(\delta_{A,B}(X) = AX - XB \).

Corollary 3.2 Let \(V \in C_p \), and let \(\psi(V) \) have the polar decomposition \(\psi(V) = U|\psi(V)| \). Then \(F_\psi \) has a global minimum on \(C_p \) at \(V \), if and only if \(U^*|\psi(V)|^{p-1} \in \ker \delta_{U,A} \).

Proof. It is a direct consequence of Theorem 3.4.

This result may be reformulated in the following form where the global minimum \(V \) does not appear. It characterizes the operators \(S \) in \(C_p \) which are orthogonal to the range of the derivation \(\delta_{A,B} \).
Theorem 3.4 Let $S \in C_p$, and let $\psi(S)$ have the polar decomposition $\psi(S) = U |\psi(S)|$. Then
\[\|\psi(X)\|_{C_p} \geq \|\psi(S)\|_{C_p}, \]
for all $X \in C_p$ if and only if $U^*|\psi(S)|^{p-1} \in \ker \delta_{B,A}$.

As a corollary of this theorem we have

Corollary 3.3 Let $S \in C_p \cap \ker \delta_{A,B}$, and let $\psi(S)$ have the polar decomposition $\psi(S) = U |\psi(S)|$. Then the two following assertions are equivalent:
1. \[\|S + (AX - XB)\|_{C_p} \geq \|S\|_{C_p}, \text{ for all } X \in C_p. \]
2. $U^*S|^{p-1} \in \ker \delta_{B,A}$.

Remark 3.1 We point out that, thanks to our general results given previously with more general linear maps ϕ, Theorem 3.4 and its Corollary 3.3 are true for more general classes of operators than $\delta_{A,B}$ like the elementary operators $E(X)$ and $\sim E(X)$.

Acknowledgement The author thanks KSU for supporting this work by the Research Center Project No. Math/1422/22.

References

[3] B.P. Duggal, *Range-kernel orthogonality of the elementary operators $X \to \sum_{i=1}^{n} A_i X B_i - X$*, linear Algebra Appl. 337 (2001), 79-86.

Author’s address:

Messaoud Bounkhel
Department of Mathematics, P.O. Box 2455,
Riyadh 11451, Saudi Arabia.
email: bounkhel@ksu.edu.sa