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Abstract

An approach is developed to find approximate solutions to the restricted
circular three body problem. The solution is useful in approximately describing
the position vectors of three spherically symmetric masses, one of which has
a much smaller mass than the other two. These masses perform free motion
under each others’ gravitational influence. The set of solutions is found using
the Lambert’s wave function.
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1 Introduction

The aim of this paper is to find approximations for the restricted circular three body
problem. The problem by definition is to describe the free motions of three masses,
two of which have spherically symmetric mass distributions and one of which is small
compared to the other two. We develop a new approach in this paper, other ap-
proaches can be found in [1, 2, 3, 4, 5, 6, 7, 8, 9]. The smaller mass should be small
enough in comparison to the other two, so that it can be approximated as a point
mass. A typical real life application of the problem would be the motion of a probe
between the earth and moon. Moreover, the spherically symmetric mass distributions
of the earth and moon would allow them to be approximated by point masses. In the
problem considered, it is further assumed that the motion of the two larger masses,
say m1 and m2 is not affected by the presence, or motion of m3, the smaller mass.
It therefore follows that m1 and m2 execute two body motion under each other’s
gravitational influence only, whereas m3 executes motion which is effected by both
the presence and motion of m1 and m2. The motion of m1 and m2 shall be solved
for, only by considering two body motion, and the motion of m3, shall then be solved
for by the use of generalized three body motion equations that we will soon develop.
Figure 1 presents a diagrammatic representation of our system of three bodies, which
form an isolated system in free space.

Our aim is to find r1, r2 and r3 explicitly as time functions. We choose to solve
the problem in two dimensions. The bodies perform translational motion under each
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Figure 1.

other’s gravitational attraction. Since our assumptions allow us to approximate the
three bodies as point masses, we neglect rotational motion.

2 Main results

It can be shown that the center of mass of the system moves with constant velocity,
which can be found. We therefore attach an inertial frame of reference to the center of
mass point, ox′y′ and model the system by the use of Newton’s Law of Gravitational
Attraction. Before we proceed to model the system, a few points are worth discussion,
presented as follows.

The mass m3 is much smaller than m1 and m2 so that the presence or motion of
m3 has no influence on the motion of m1 and m2. Therefore the motion of m1 and m2

is effected only by each other’s presence and motion, and that of m3 is effected by the
presence and motion of both m1 and m2. It therefore follows that the Center of Mass
of the system should be approximately unaffected, whether or not m3 is present. m1

and m2 therefore execute two body motion, the motion of m3 being effected by the
motion and presence of m1 and m2. Also it follows that the Center of Mass should
be present on a straight line joining m1 and m2.

It should follow from the above argument that:

θ2 = θ1 + π for all t ⇒ .

θ2=
.

θ1

and also
êr1 = −êr2 and êθ1 = −êθ2 for all t

where êr1 and êr2 are unit vectors in the direction of r1, and r2, respectively and where
êθ1 and êθ2 are unit vectors perpendicular to êr1 and êr2 , respectively. It should be
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noted that ”.” denotes d
dt . We now go on to model the system, by the use of the

Newton’s Law of Gravitational Attraction. For the moment we relax the assumptions
that m3 ¿ m1 and m3 ¿ m2 so that we first model the generalized three body
problem. This model would later be utilized when we try describing the motion of
m3. Figure 2 presents the configuration of the bodies with the assumptions relaxed.

Figure 2.

Modeling the system by considering the fact that the net force on each body is due
to the gravitational attraction of the other two bodies we get the following equations

..
r1=

( Gm2

|r2 − r1|2
)[ êr2 − êr1

|êr2 − êr1 |
]

+
( Gm3

|r3 − r1|2
)[ êr3 − êr1

|êr3 − êr1 |
]

(2.1)

..
r2= −

( Gm1

|r2 − r1|2
)[ êr2 − êr1

|êr2 − êr1 |
]

+
( Gm3

|r3 − r2|2
)[ êr3 − êr2

|êr3 − êr2 |
]

(2.2)

..
r3= −

( Gm1

|r3 − r1|2
)[ êr3 − êr1

|êr3 − êr1 |
]
−

( Gm2

|r3 − r2|2
)[ êr3 − êr2

|êr3 − êr2 |
]

(2.3)

where êr3 is a unit vector in the direction of r3. We now try removing the absolute
value expressions

|r2 − r1|2 = r2
1 + r2

2 − 2r1r2 cos(θ2 − θ1)(2.4)

Similarly,

|r3 − r1|2 = r2
1 + r2

3 − 2r1r3 cos(θ3 − θ1)(2.5)
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|r3 − r2|2 = r2
2 + r2

3 − 2r2r3 cos(θ3 − θ2)(2.6)

Also, we can write

|êr2 − êr1 | =
√

2
√

1− cos(θ2 − θ1)(2.7)

Similarly,

|êr3 − êr1 | =
√

2
√

1− cos(θ3 − θ1)(2.8)

and

|êr3 − êr2 | =
√

2
√

1− cos(θ3 − θ2)(2.9)

Using the above results in equations (2.1), (2.2) and (2.3), we get

..
r1=

( Gm2√
2(r2

1 + r2
2 − 2r1r2 cos(θ2 − θ1))

√
1− cos(θ2 − θ1)

)
[êr2 − êr1 ] +

( Gm3√
2(r2

1 + r2
3 − 2r1r3 cos(θ3 − θ1))

√
1− cos(θ3 − θ1)

)
[êr3 − êr1 ](2.10)

..
r2= −

( Gm1√
2(r2

1 + r2
2 − 2r1r2 cos(θ2 − θ1)

√
1− cos(θ2 − θ1)

)
[êr2 − êr1 ] +

( Gm3√
2(r2

2 + r2
3 − 2r2r3 cos(θ3 − θ2)

√
1− cos(θ3 − θ2)

)
[êr3 − êr2 ](2.11)

..
r3= −

( Gm1√
2(r2

1 + r2
3 − 2r1r3 cos(θ3 − θ1)

√
1− cos(θ3 − θ1)

)
[êr3 − êr1 ]−

( Gm2√
2(r2

2 + r2
3 − 2r2r3 cos(θ3 − θ2)

√
1− cos(θ3 − θ2)

)
[êr3 − êr2 ](2.12)

Now we can resolve each equation in polar coordinates to derive the required scalar
differential equations. Before we do that, we must resolve the unit vectors in terms
of each other. Figure 2 serves as an aid while performing this task.

Resolving êr1 , êr2 and êr3 we get

êr2 = cos(θ2 − θ1)êr1 + sin(θ2 − θ1)êθ1

êr3 = cos(θ3 − θ1)êr1 + sin(θ3 − θ1)êθ1

êr1 = cos(θ2 − θ1)êr2 + sin(θ2 − θ1)êθ2

êr3 = cos(θ3 − θ2)êr2 + sin(θ3 − θ2)êθ2

êr1 = cos(θ3 − θ1)êr3 + sin(θ3 − θ1)êθ3

êr2 = cos(θ3 − θ2)êr3 + sin(θ3 − θ2)êθ3
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Figure 3.

Resolving equations (2.10), (2.11) and (2.12) parallel and perpendicular to êr1 , êr2

and êr3 , respectively and comparing coefficients of the unit vectors on both sides for
each equation, we can derive the following necessary scalar differential equations

..
r1 −r1

.

θ
2

1=
Gm2[cos(θ2 − θ1)− 1]√

2(r2
1 + r2

2 − 2r1r2 cos(θ2 − θ1))
√

1− cos(θ2 − θ1)
+

Gm3[cos(θ3 − θ1)− 1]√
2(r2

1 + r2
3 − 2r1r3 cos(θ3 − θ1))

√
1− cos(θ3 − θ1)

(2.13)

r1

..

θ1 +2
.
r1

.

θ1=
Gm2[sin(θ2 − θ1)]√

2(r2
1 + r2

2 − 2r1r2 cos(θ2 − θ1))
√

1− cos(θ2 − θ1)
+

Gm3[sin(θ3 − θ1)]√
2(r2

1 + r2
3 − 2r1r3 cos(θ3 − θ1))

√
1− cos(θ3 − θ1)

(2.14)

..
r2 −r2

.

θ
2

2=
Gm1[cos(θ2 − θ1)− 1]√

2(r2
1 + r2

2 − 2r1r2 cos(θ2 − θ1))
√

1− cos(θ2 − θ1)
+

Gm3[cos(θ3 − θ1)− 1]√
2(r2

2 + r2
3 − 2r2r3 cos(θ3 − θ2))

√
1− cos(θ3 − θ2)

(2.15)

r2

..

θ2 +2
.
r2

.

θ2= − Gm1[sin(θ2 − θ1)]√
2(r2

1 + r2
2 − 2r1r2 cos(θ2 − θ1))

√
1− cos(θ2 − θ1)

−

Gm3[sin(θ3 − θ2)]√
2(r2

2 + r2
3 − 2r2r3 cos(θ3 − θ2))

√
1− cos(θ3 − θ2)

(2.16)
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..
r3 −r3

.

θ
2

3=
Gm1[cos(θ3 − θ1)− 1]√

2(r2
1 + r2

3 − 2r1r3 cos(θ3 − θ1))
√

1− cos(θ3 − θ1)
+

Gm2[cos(θ3 − θ2)− 1]√
2(r2

2 + r2
3 − 2r2r3 cos(θ3 − θ2))

√
1− cos(θ3 − θ2)

(2.17)

r3

..

θ3 +2
.
r3

.

θ3= − Gm1[sin(θ3 − θ1)]√
2(r2

1 + r2
3 − 2r1r3 cos(θ3 − θ1))

√
1− cos(θ3 − θ1)

−

Gm2[sin(θ3 − θ2)]√
2(r2

2 + r2
3 − 2r2r3 cos(θ3 − θ2))

√
1− cos(θ3 − θ2)

(2.18)

One may ask as to why we derived all these equations in this form. For convenience
of the reader we restate here that this model of the generalized three body problem
will be useful when it comes to describing the free motion of m3 under the influence
of m1 and m2.

In the restricted case then, r1 and r2 can be found explicitly as time functions
by considering only two body motion (the motion of m1 and m2 under each others’
influence). Finding r1 and r2 as time functions would mean that we find r1(t), θ1(t),
r2(t) and θ2(t). Having done this, we can find r3(t) and θ3(t) by elimination from
equations (2.13), (2.14), (2.15) and (2.16). Here is the summary of our methodology
for the restricted case
1: Find r1(t), θ1(t), r2(t) and θ2(t) by considering two body motion only (that of m1

and m2).
2: Find r3(t) and θ3(t) by elimination from equations (2.13) through (2.16).
We do not hesitate in pointing out that another option could be the simultaneous
solution of equations (2.17) and (2.18) for r3(t) and θ3(t), but as should be obvious,
this approach would be quite cumbersome and perhaps not possible.

We now go on to find r1 and r2 by considering two body motion only. The
configuration is shown in figure 2.

Here ox′y′ is an inertial frame of reference attached to the center of mass. Doubtlessly
ox′y′ is inertial reference frame, since we can prove that the Center of Mass of the
system has a constant velocity for all t. Modeling the system by using Newton’s
Gravitational Law, we can derive the following equations

..
r1= −

[ Gm2

(r1 + r2)2
]
êr1(2.19)

and

..
r2= −

[ Gm1

(r1 + r2)2
]
êr2(2.20)

The above equations are derived by making use of ox′y′ as reference frame. For the
two body motion and the restricted three body case, the following equations are valid

êr1 = −êr2(2.21)

êθ1 = −êθ2(2.22)
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Figure 4.

Subtracting (2.19) from (2.20) while making use of (2.21) we get

..
r2 − ..

r1= −
[G(m1 + m2)

(r1 + r2)2
]
êr2(2.23)

We now define r = r2 − r1, r = rêr, r = r1 + r2, êr = êr2 and êθ = êθ2 . Where êr is
a unit vector along r and êθ is a unit vector perpendicular to êr. Incorporating the
above definitions in (2.23) we get

..
r= −

[G(m1 + m2)
r2

]
êr(2.24)

Resolving
..
r in polar coordinates we have

(
..
r −r

.

θ
2

)
êr +

(
r

..

θ +2
.
r

.

θ
)
êθ = −

[G(m1 + m2)
r2

]
êr

Here θ(t) is the rotation angle of r. It also follows that θ(t) = θ2(t). Comparing
coefficients of êr and êθ in the above relation, we find

(
..
r −r

.

θ
2
) = −

[G(m1 + m2)
r2

]
(2.25)

(r
..

θ +2
.
r

.

θ) = 0(2.26)

Multiplying (2.26) by r and integrating on both sides we get

r2
.

θ= h = constant(2.27)
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Now for solving equation (2.25), we make use of the substitution r = 1
u and relation

(2.27) to get

r(θ) =
1[

C cos(θ + φ) + (G(m1+m2)
h2 )

](2.28)

where C and φ are constants of integration, determinable by the incorporation of
initial conditions. Substituting (2.28) in (2.27), using separation of variables and
integrating on both sides, we can show that

h(t− t0) =
2[

(G(m1+m2)
h2 )− C

]2

(k − 1
4k

3
2

)

ln
[ (tan 0.5θ −

√
k)(tan 0.5θ0 +

√
k)

(tan 0.5θ +
√

k)(tan 0.5θ0 −
√

k)

]
−

(k + 1
4k

)[ 1
tan 0.5θ +

√
k

+

1
tan 0.5θ −

√
k
− 1

tan 0.5θ0 +
√

k
− 1

tan 0.5θ0 −
√

k

]

It is apparent from this expression that we cannot find θ(t) explicitly. Had this been
possible, we could try finding r(t) by substituting

.

θ (t) into equation (2.27). Having
found r(t) and θ(t), our next step would be to attempt to find r1(t) and r2(t) from
equations (2.19) and (2.20) by making use of the relation θ(t) = θ2(t) = θ1(t) + π.
However to our disappointment, this is rendered impossible by the inability to find
θ(t) explicitly from the above expression.

We now suggest a simple mathematical argument, for angular velocities that are
small (| .

θ |〈1 radians per second) and for r not very large (r ¿ ±∞) we claim that
.

θ
2
= 0 which implies r

.

θ
2
= 0. It follows that

..
r −r

.

θ
2
=

..
r and equation (2.25) reduces

to

..
r= −

[G(m1 + m2)
r2

]
for all | .

θ |〈1rad/s and|r| ¿ ∞(2.29)

Multiplying (2.25) by
.
r dr and integrating on the left hand side with respect to t and

on the right hand side with respect to r, we get

dr

dt
= ±

[A

r
+ B

] 1
2

where A = 2G(m1 +m2) and B =
.
r
2
0 − 2G(m1+m2)

r0
. Separating variables and integrat-

ing gives
∫ r

r0

[ A

Br
+ 1

]− 1
2
dr = ±

√
B

∫ t

t0

dt(2.30)

where r0 is the initial value of r at initial time t0. If we try evaluating an exact
value of the integral on the left hand side of the preceding equation, we can obtain
an equation relating r and t, but r(t) cannot be explicitly solved for. We therefore
try and keep things simple, by the use of a binomial approximation

[ A

Br
+ 1

]− 1
2

= 1−
( A

2Br

)
for all |r|〉

∣∣∣∣∣
2G(m1 + m2)

.
r0

2 −( 2G(m1+m2)
r0

)

∣∣∣∣∣
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It should be noted that here that B = 0 is not an allowable value, however this will

soon be taken care of. Replacing
[

A
rB + 1

]− 1
2

by its approximation in (2.30) and
integrating on both sides we get

r + ln r−k = f(t)(2.31)

where k =
(

A
2B

)
and f(t) = ±√B(t − t0) + r0 − ln rk

0 . Here we restrict B to be
necessarily positive, so that f(t) is real. This of course, is one of our added solvability
conditions. Later we will collectively state all solvability conditions. Solving for r(t)
then, explicitly from (2.31) we get

r(t) = −k lambertw
[−e−

f
k

k

]
(2.32)

where ’lambertw’ is the notation used for the lambert’s wave function. Substituting
the values of k and f(t) in (2.32), and performing few manipulations, we can derive
the following expression

r(t) = −
( A

2B

)
lambertw

[
c4e

c5t
]

(2.33)

where c4 = c1e
c2t0 , c5 = −c2, c1 = −

(
2B
A

)
e−( 2B

A )(r0−ln r
A
2B
0 ) and c2 = ±

(
2B
√

B
A

)
. Of

course this approximation is valid only when the following conditions hold
∣∣∣∣∣

2G(m1 + m2)
.
r0

2 −( 2G(m1+m2)
r0

)

∣∣∣∣∣〈|r| ¿ ∞ and | .

θ |〈1 rad/s (
.

θ1=
.

θ2=
.

θ for all t)

Having derived r(t), we now go on to derive r1(t) and r2(t). Consider again equations
(2.19) and (2.20). We can derive (2.34) and (2.35) from (2.19) and (2.20) respectively,
with a procedure similar to the one adopted in the derivation of (2.29) from (2.24)

..
r1= −Gm2

r2
for all | .

θ1 |〈1 rad/s and r1 ¿ ±∞(2.34)

..
r2= −Gm1

r2
for all | .

θ2 |〈1 rad/s and r2 ¿ ±∞(2.35)

Note that the conditions required for (2.34) and (2.35) to hold true, follow automati-
cally from the conditions required for (2.29) to hold true. It should be noted that r(t)
is now known in both (2.34) and (2.35). All we need to do is merely substitute for r(t)
into (2.34) and (2.35) and integrate twice with respect to time to get the expressions

r1(t) = kat− kat0 + r10 +
(kb

c5

)[
1
2
(lambertw[c4e

c5t])4 +

(lambertw[c4e
c5t])3 +

1
2
(lambertw[c4e

c5t])2 − 1
2
(lambertw[c4e

c5t0 ])4

−(lambertw[c4e
c5t0 ])3 − 1

2
(lambertw[c4e

c5t0 ])2
]

(2.36)
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where r10 = r1(0),
.
r10=

.
r1 (0), ka =

.
r10 −

(
k1
2c5

)[
1 + 2lambertw(c4e

c5t0)
]
, kb =

(
k1
2c5

)

and k1 = −
(

4B2Gm2
A2

)
. And

r2(t) = kct− kct0 + r20 +
(kd

c5

)[
1
2
(lambertw[c4e

c5t])4 +

(lambertw[c4e
c5t])3 +

1
2
(lambertw[c4e

c5t])2 − 1
2
(lambertw[c4e

c5t0 ])4

−(lambertw[c4e
c5t0 ])3 − 1

2
(lambertw[c4e

c5t0 ])2
]

(2.37)

where r20 = r2(0),
.
r20=

.
r2 (0), kc =

.
r20 −

(
k2
2c2

)[
1 + 2lambertw(c4e

c5t0)
]
, kd =

(
k2
2c2

)

and k2 = −
(

4B2Gm1
A2

)
.

We will now present the formal procedure for deriving θ1(t) and θ2(t). Multiplying
(2.26) by r, we can derive the form d

dt [r
2

.

θ] = 0 which implies d(r2
.

θ) = 0. Integrating
and solving for

.

θ (t) would then yield

.

θ (t) = r2
0

.

θ0 r−2(t)(2.38)

Since θ(t) = θ2(t) and θ2(t) = θ1(t) + π which implies
.

θ (t) =
.

θ1 (t) =
.

θ2 (t) for all t.
Now using these relations and equation (2.38) we get

.

θ1= r2
0

.

θ0 r−2(t)(2.39)

.

θ2= r2
0

.

θ0 r−2(t)(2.40)

Now, substituting the expression for r(t) from equation (2.33), separating variables
and integrating within the necessary limits, we can derive the relations

θ1(t) = θ10 +

(
4r2

0B
2

.

θ0

c5A2

)(
1 + 2lambertw[c4e

c5t0 ]
)(

lambertw[c4e
c5t0 ]

)2

−
(

4r2
0B

2
.

θ0

c5A2

)(
1 + 2lambertw[c4e

c5t]
)(

lambertw[c4e
c5t]

)2

(2.41)

θ2(t) = θ20 +

(
4r2

0B
2

.

θ0

c5A2

)(
1 + 2lambertw[c4e

c5t0 ]
)(

lambertw[c4e
c5t0 ]

)2

−
(

4r2
0B

2
.

θ0

c5A2

)(
1 + 2lambertw[c4e

c5t]
)(

lambertw[c4e
c5t]

)2

(2.42)

where, θ10 and θ20 are the values of θ1 and θ2 at time t0, respectively.
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Our task of finding r1(t), r2(t), θ1 and θ2 is essentially complete, results given
in (2.36), (2.37), (2.41) and (2.42). We can now move on to find r3(t) and θ3 by
algebraic manipulations on equations (2.13) through (2.16), instead of solving (2.17)
and (2.18) simultaneously. It should be noted that (2.13) through (2.18) represent the
generalized situation, where m3 has an effect on the motion of m1 and m2. Since we
want to solve for the restricted case, we enforce our assumptions for the restricted case
onto equations (2.13) through (2.18). This can easily be accomplished by replacing
θ2− θ1 by π in all the six equations (since θ2 = θ1 +π for the restricted circular three
body problem). Imposing these conditions we get simpler equations

..
r1 −r1

.

θ
2

1 =
Gm3[cos(θ3 − θ1)− 1]√

2(r2
1 + r2

3 − 2r1r3 cos(θ3 − θ1))
√

1− cos(θ3 − θ1)

− Gm2

(r2
1 + r2

2 + 2r1r2)
(2.43)

r1

..

θ1 +2
.
r1

.

θ1=
Gm3[sin(θ3 − θ1)]√

2(r2
1 + r2

3 − 2r1r3 cos(θ3 − θ1))
√

1− cos(θ3 − θ1)
(2.44)

..
r2 −r2

.

θ
2

2 =
Gm3[cos(θ3 − θ2)− 1]√

2(r2
2 + r2

3 − 2r2r3 cos(θ3 − θ2))
√

1− cos(θ3 − θ2)

− Gm1

(r2
1 + r2

2 + 2r1r2)
(2.45)

r2

..

θ2 +2
.
r2

.

θ2= − Gm3[sin(θ3 − θ2)]√
2(r2

2 + r2
3 − 2r2r3 cos(θ3 − θ2))

√
1− cos(θ3 − θ2)

(2.46)

..
r3 −r3

.

θ
2

3=
Gm1[cos(θ3 − θ1)− 1]√

2(r2
1 + r2

3 − 2r1r3 cos(θ3 − θ1))
√

1− cos(θ3 − θ1)
+

Gm2[cos(θ3 − θ2)− 1]√
2(r2

2 + r2
3 − 2r2r3 cos(θ3 − θ2))

√
1− cos(θ3 − θ2)

(2.47)

r3

..

θ3 +2
.
r3

.

θ3= − Gm1[sin(θ3 − θ1)]√
2(r2

1 + r2
3 − 2r1r3 cos(θ3 − θ1))

√
1− cos(θ3 − θ1)

−

Gm2[sin(θ3 − θ2)]√
2(r2

2 + r2
3 − 2r2r3 cos(θ3 − θ2))

√
1− cos(θ3 − θ2)

(2.48)

It should be noted that (2.17) and (2.18) remain unaffected inspite of the imposition of
our assumptions. The best idea is definitely to obtain r3(t) and θ3(t) by manipulations
on (2.43) to (2.46), instead of the simultaneous solution of (2.47) and (2.48).

We identify a time function f1(t) from equation (2.43), which is of the form

f1(t) =
[cos(θ3 − θ1)− 1]√

2(r2
1 + r2

3 − 2r1r3 cos(θ3 − θ1))
√

1− cos(θ3 − θ1)
(2.49)



Closed form approximation solutions 123

Here f1(t) has been considered as a time function since we expect each of the right
hand side variables to be solvable explicitly as time functions. Of these right hand
side variables we have already found r1(t) and θ1(t). Since r3(t) and θ3(t) should also
be time functions, it follows that f1(t) is essentially a function of time. Substituting
equation (2.49) in equation (2.43) and solving for f1(t) we get

f1(t) =

(
..
r1 − .

r1

.

θ
2

1

Gm3

)
+

(
(m2

m3
)

r2
1 + r2

2 + 2r1r2

)

(we may choose r1

.

θ
2

1= 0 since | .

θ1 |〈1 radians per second and r1 ¿ ±∞, however it
is better not to do so, for obtaining better approximations). Using the same idea we
can rewrite (2.44) to (2.46) in simpler forms, as will be clearly demonstrated in what
follows.

We identify the following time function from equation (2.44)

f2(t) =
[sin(θ3 − θ1)− 1]√

2(r2
1 + r2

3 − 2r1r3 cos(θ3 − θ1))
√

1− cos(θ3 − θ1)
(2.50)

Substituting equation (2.50) in (2.44) and solving for f2(t) yields

f2(t) =

(
r1

..

θ1 +2
.
r1

.

θ1

Gm3

)

Similarly, f3(t) is identified and solved for (as follows) by use of equation (2.45)

f3(t) =
[cos(θ3 − θ2)− 1]√

2(r2
2 + r2

3 − 2r2r3 cos(θ3 − θ2))
√

1− cos(θ3 − θ2)
(2.51)

f3(t) =

(
..
r2 − .

r2

.

θ
2

2

Gm3

)
+

(
(m1

m3
)

r2
1 + r2

2 + 2r1r2

)

(we may choose r2

.

θ
2

2= 0 since | .

θ2 |〈1 radians per second and r2 ¿ ±∞, however it
is better not to do so, for reasons of better approximations.)
Similarly, we can choose f4(t), from equation (2.46) to be the following

f4(t) =
[sin(θ3 − θ2)− 1]√

2(r2
2 + r2

3 − 2r2r3 cos(θ3 − θ2))
√

1− cos(θ3 − θ2)
(2.52)

Now substitution of (2.52) into (2.46) gives the following relation

f4(t) =

(
r2

..

θ2 +2
.
r2

.

θ2

−Gm3

)

From (2.49) we may write

√
2(r2

1 + r2
3 − 2r1r3 cos(θ3 − θ1))

√
1− cos(θ3 − θ1) =

(
cos(θ3 − θ1)− 1

f1(t)

)
(2.53)
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Putting (2.53) in (2.50), we get

f2(t) =

(
sin(θ3 − θ1)

cos(θ3 − θ1)− 1

)
f1(t)

which can be rewritten as

[f2(t)] cos(θ3 − θ1) + [−f1(t)] sin(θ3 − θ1) = f2(t)(2.54)

We can write the above equation in a more compact form, as follows

k(t) cos(θ3 − θ1 − η(t)) = f2(t)(2.55)

where k(t) = ±
√

f2
1 (t) + f2

2 (t) and η(t) = tan−1
(
−f1(t)
f2(t)

)
. Solving for θ3(t) from

(2.55) and replacing the expressions for k(t) and η(t) we get

θ3(t) = cos−1

[
f2(t)

±
√

f2
1 (t) + f2

2 (t)

]
+ θ1 + tan−1

(
−f1(t)
f2(t)

)
(2.56)

It follows that we can write equations (2.49) through (2.50) in the following forms

r2
3 + (−2r1)r3 cos(θ3 − θ1) + r2

1 =

(
cos(θ3 − θ1)− 1√

2f1[1 + cos(θ3 − θ1)]
1
2

)
(2.57)

r2
3 + (−2r1)r3 cos(θ3 − θ1) + r2

1 =

(
sin(θ3 − θ1)√

2f2[1− cos(θ3 − θ1)]
1
2

)
(2.58)

r2
3 + (−2r2)r3 cos(θ3 − θ2) + r2

2 =

(
cos(θ3 − θ2)− 1√

2f3[1− cos(θ3 − θ2)]
1
2

)
(2.59)

r2
3 + (−2r2)r3 cos(θ3 − θ2) + r2

2 =

(
sin(θ3 − θ2)√

2f4[1− cos(θ3 − θ2)]
1
2

)
(2.60)

Subtracting (2.60) from (2.58) and solving for r3(t), we can derive the expression

r3(t) =

[ ( sin(θ3−θ1)√
2f2[1−cos(θ3−θ1)]

1
2
)− ( sin(θ3−θ2)√

2f4[1−cos(θ3−θ2)]
1
2
) + r2

2 − r2
1

2r2 cos(θ3 − θ2)− 2r1 cos(θ3 − θ1)

]
(2.61)

It should be noted that r3(t) has been found explicitly as a function of time, since all
variables involved on the right hand side of (2.61) are known as time functions.

Our task is essentially complete since equations (2.36), (2.37), (2.41), (2.42), (2.56)
and (2.61) define explicit closed form approximations for r1(t), r2(t), θ1(t), θ2(t), θ3(t)
and r3(t) respectively, valid for the cases

|r| = |r1|+ |r2|〉
∣∣∣∣∣

2G(m1 + m2)
.
r
2
0 −( 2G(m1+m2)

r0
)

∣∣∣∣∣
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Or equivalently

|r1|+ |r2|〉
∣∣∣∣∣

2G(m1 + m2)

(
.
r10 +

.
r20)2 − (2G(m1+m2)

r10+r20
)

∣∣∣∣∣

Since
r0 = r10 + r20 which implies

.
r0=

.
r10 +

.
r20

It should be noted again that another condition that must be simultaneously satisfied
for these approximations to hold valid is that the angular velocities of the two massive
bodies m1 and m2 are small and their distances form the centre of mass are not
arbitrarily large, i.e.

| .

θ1 |〈1 rad/s, | .

θ2 |〈1 rad/s, |r1| ¿ ∞, |r2| ¿ ∞

Another solvability condition that we require is that B〉0. This should be rendered
obvious from the definition of f(t) in equation (2.31). Note also, that the solutions
obtained are not valid for the case of collision or explosion analysis. Having dis-
cussed in detail, our formal procedure for solution, we now go on to summarize our
accomplishments.

Conclusions

In this paper we have developed a versatile approach to find approximate solutions
for the restricted circular three body problem. The problem finds a lot of applications
in celestial mechanics. As mentioned previously, a typical application of the problem
would be to describe the motion of an interplanetary probe under the gravitational
influence of two massive gravitating bodies, that is planets. We considered the fact
that the motion of the two massive bodies m1 and m2 was not effected by the presence
or motion of a third body m3 having negligible mass on a relative scale. Using this
proposition, we found analytic approximations for the motions of m1 and m2, which
were given by the expressions defining r1(t), r2(t), θ1(t) and θ2(t). Of course this was
accomplished by a simple consideration of the two body motion executed by m1 and
m2. Having done this, we modeled the system of three bodies, taking into account
the motion of m3, under the gravitational influence of m1 and m2. The next step was
to find approximations for the motion of m3. This was accomplished by using our
approximations for the motions of m1 and m2 (found through consideration of two
body motion), and performing algebraic manipulations on the system of equations
developed while considering three body dynamics.
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