Isomorphisms of cyclic abelian covers of symmetric digraphs II

Iwao Sato

Abstract

Let D be a connected symmetric digraph, Γ a group of automorphisms of D, and A a finite abelian group with some specified property. We give an algebraic characterization for two A-covers of D to be Γ -isomorphic, for any A. We give the number of isomorphism classes of g-cycic F_2^r -covers of a connected bipartite symmetric digraph D with respect to the trivial group I of automorphisms of D, for $g \in F_2^r$, where F_2^r is the r-dimesional vector space over the finite field F_2 with two elements. Furthermore, we enumerate the number of I-isomorphism classes of g-cyclic Z_{2m} -covers of a connected bipartite symmetric digraph D for the cyclic group Z_{2m} of order 2^m .

M.S.C. 2000: 05C10, 05C30.

Key words: voltage assignment, covering digraph, enumeration, isomorphism.

§1. Introduction

Graphs and digraphs treated here are finite and simple.

A graph H is called a *covering* of a graph G with projection $\pi: H \longrightarrow G$ if there is a surjection $\pi: V(H) \longrightarrow V(G)$ such that $\pi|_{N(v')}: N(v') \longrightarrow N(v)$ is a bijection for all vertices $v \in V(G)$ and $v' \in \pi^{-1}(v)$. The projection $\pi: H \longrightarrow G$ is an *n*-fold *covering* of G if π is *n*-to-one. A covering $\pi: H \longrightarrow G$ is said to be *regular* if there is a subgroup B of the automorphism group Aut H of H acting freely on H such that the quotient graph H/B is isomorphic to G.

Let G be a graph and A a finite group. Let D(G) be the arc set of the symmetric digraph corresponding to G. Then a mapping $\alpha : D(G) \longrightarrow A$ is called an *ordinary* voltage assignment if $\alpha(v, u) = \alpha(u, v)^{-1}$ for each $(u, v) \in D(G)$. The (ordinary) derived graph G^{α} derived from an ordinary voltage assignment α is defined as follows:

 $V(G^{\alpha}) = V(G) \times A$, and $((u, h), (v, k)) \in D(G^{\alpha})$ if and only if $(u, v) \in D(G)$ and $k = h\alpha(u, v)$.

The graph G^{α} is called an *A*-covering of *G*. The *A*-covering G^{α} is an |A|-fold regular covering of *G*. Every regular covering of *G* is an *A*-covering of *G* for some group *A* (see [3]).

Applied Sciences, Vol.6, 2004, pp. 53-65.

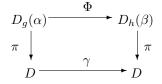
[©] Balkan Society of Geometers, Geometry Balkan Press 2004.

Let D be a symmetric digraph and A a finite group. A function $\alpha : A(D) \longrightarrow A$ is called *alternating* if $\alpha(y, x) = \alpha(x, y)^{-1}$ for each $(x, y) \in A(D)$. For $g \in A$, a g-cyclic A-cover $D_g(\alpha)$ of D is the digraph as follows:

$$V(D_g(\alpha)) = V(D) \times A$$
, and $((u,h), (v,k)) \in A(D_g(\alpha))$ if and only if $(u,v) \in A(D)$ and $k^{-1}h\alpha(u,v) = g$.

The natural projection $\pi : D_g(\alpha) \longrightarrow D$ is a function from $V(D_g(\alpha))$ onto V(D)which erases the second coordinates. A digraph D' is called a *cyclic A-cover* of Dif D' is a g-cyclic A-cover of D for some $g \in A$. In the case that A is abelian, then $D_g(\alpha)$ is called simply a *cyclic abelian cover*. Furthermore the 1-cyclic A-cover $D_1(\alpha)$ of a symmetric digraph D can be considered as the A-covering G^{α} of the underlying graph G of D.

Let α and β be two alternating functions from A(D) into A, and let Γ be a subgroup of the automorphism group Aut D of D, denoted $\Gamma \leq Aut D$. Let $g, h \in A$. Then two cyclic A-covers $D_g(\alpha)$ and $D_h(\beta)$ are called Γ -isomorphic, denoted $D_g(\alpha) \cong_{\Gamma} D_h(\beta)$, if there exist an isomorphism $\Phi : D_g(\alpha) \longrightarrow D_h(\beta)$ and a $\gamma \in \Gamma$ such that $\pi \Phi = \gamma \pi$, i.e., the diagram



commutes. Let $I = \{1\}$ be the trivial group of automorphisms.

A general theory of graph coverings is developed in [4]. Z_2 -coverings (double coverings) of graphs were dealed in [5] and [17]. Hofmeister [7] and, independently, Kwak and Lee [11] enumerated the *I*-isomorphism classes of *n*-fold coverings of a graph, for any $n \in N$. Dresbach [2] obtained a formula for the number of strong isomorphism classes of regular coverings of graphs with voltages in finite fields. The *I*-isomorphism classes of regular coverings of graphs with voltages in finite dimensional vector spaces over finite fields were enumerated by Hofmeister [6]. Hong, Kwak and Lee [8] gave the number of *I*-isomorphism classes of Z_n -coverings, $Z_p \bigoplus Z_p$ -coverings and D_n -coverings, *n*:odd, of graphs, respectively. Sato [16] counted the Γ -isomorphism classes of Z_p -coverings of graphs for any prime p(> 2).

Cheng and Wells [1] discussed isomorphism classes of cyclic triple covers (1-cyclic Z_3 -covers) of a complete symmetric digraph. Furthermore, Mizuno and Sato [13] gave a formula for the characteristic polynomial of a cyclic A-cover of a symmetric digraph, for any finite group A. Mizuno and Sato [15] discussed the number of Γ -isomorphism classes of cyclic V-covers of a connected symmetric digraph for any finite dimensional vector space V over the finite field GF(p)(p > 2). For a connected symmetric digraph D, Mizuno and Sato [14] obtained a sufficient condition for two Γ -isomorphism classes of cyclic abelian covers of D to be of the same cardinality, and presented the number of I-isomorphism classes of g-cyclic Z_{p^m} -covers of D for any prime p(> 2). For a connected cyclic A-covers, Mizuno, Lee and Sato [12] enumerated the number of I-isomorphism classes of connected g-cyclic A-covers of D, when A is the cyclic group Z_{p^m} and the direct sum of m copies of Z_p for any prime p(> 2).

In Section 2, we give a necessary and sufficient condition for two cyclic A-covers of a connected symmetric digraph to be Γ -isomorphic for any finite abelian group A. As a corollary, we present the number of I-isomorphism classes of g-cyclic Z_2^r -covers of a connected bipartite symmetric digraph D. In Section 3, we treat the enumeration and the structure of Γ -isomorphism classes of cyclic F_2^r -covers of D. In Section 4, we count the number of I-isomorphism classes of g-cyclic Z_{2m} -covers of D.

\S 2. Isomorphisms of cyclic abelian covers

Let D be a symmetric digraph and A a finite group. The group Γ of automorphisms of D acts on the set C(D) of alternating functions from A(D) into A as follows:

$$\alpha^{\gamma}(x,y) = \alpha(\gamma(x),\gamma(y)) \text{ for all } (x,y) \in A(D),$$

where $\alpha \in C(D)$ and $\gamma \in \Gamma$. Any voltage $g \in A$ determines a permutation $\rho(g)$ of the symmetric group S_A on A which is given by $\rho(g)(h) = hg$, $h \in A$.

Mizuno and Sato [15] gave a characterization for two cyclic A-covers of D to be Γ -isomorphic.

Theorem 1 [15, Theorem 3.1] Let D be a symmetric digraph, A a finite group, $g, h \in A, \alpha, \beta \in C(D)$ and $\Gamma \leq Aut D$.

1. $D_q(\alpha) \cong {}_{\Gamma} D_h(\beta).$

2. There exist a family $(\pi_u)_{u \in V(D)} \in S_A^{V(D)}$ and $\gamma \in \Gamma$ such that

$$\rho(\beta^{\gamma}(u,v)h^{-1}) = \pi_{v}\rho(\alpha(u,v)g^{-1})\pi_{u}^{-1} \ for \ each \ (u,v) \in A(D),$$

where the multiplication of permutations is carried out from right to left.

From now on, assume that D is connected and A is abelian. Let G be the underlying graph, T be a spanning tree of G and w a root of T. For any $\alpha \in C(D)$ and any walk W in G, the *net* α -voltage of W, denoted $\alpha(W)$, is the sum of the voltages of the edges of W. Then the T-voltage α_T of α is defined as follows:

$$\alpha_T(u,v) = \alpha(P_u) + \alpha(u,v) - \alpha(P_v) \text{ for each } (u,v) \in D(G) = A(D),$$

where P_u and P_v denote the unique walk from w to u and v in T, respectively. For a function $f: A(D) \longrightarrow A$, the *net* f-value f(W) of any walk W is defined as the net α -voltage of W.

Corollary 1 Let D be a connected symmetric digraph, G its underlying graph, T be a spanning tree of G and $\alpha \in C(D)$. Furthermore, let A be a finite abelian group and $g \in A$. Then

$$D_q(\alpha) \cong {}_I D_q(\alpha_T).$$

Moreover, there exists a function $s: V(D) \longrightarrow A$ such that

$$\alpha_T(u,v) = s(v) + \alpha(u,v) - s(u) \text{ for each } (u,v) \in D(G) = A(D),$$

Proof. Let $s(v) = \rho(-\alpha(P_v))$ for $v \in V(D)$. Then, by Theorem 1, the result follows.

For a function $f: C(D) \longrightarrow A$, let $A_f(v)$ denote the subgroup of A generated by all net f-values of the closed walk based at $v \in V(D)$. Let ord(g) be the order of $g \in A$. For a subset B of A, let $\langle B \rangle$ denote the subgroup of A generated by B.

Theorem 2 Let D be a connected symmetric digraph, A a finite abelian group, $g, h \in A$ and $\alpha, \beta \in C(D)$. Furthermore, let G be the underlying graph of D, T a spanning tree of G and $\Gamma \leq Aut$ G. Then the following are equivalent:

- 1. $D_q(\alpha) \cong {}_{\Gamma} D_h(\beta).$
- 2. There exist $\gamma \in \Gamma$ and an isomorphism

$$\sigma :< A_{\alpha_T - \epsilon g}(w) \cup \{2g\} > \longrightarrow < A_{\beta_{\gamma_T} - \epsilon h}(\gamma(w)) \cup \{2h\} >$$

such that

$$\beta_{\gamma T}^{\gamma}(u,v) - \epsilon^{\gamma}h = \sigma(\alpha_T(u,v) - \epsilon g) \text{ for each } (u,v) \in A(D)$$

and

$$\sigma(2g) = 2h,$$

where $(\alpha_T - g)(u, v) = \alpha_T(u, v) - g$, $(u, v) \in A(D)$, $w \in V(D)$ and

$$\epsilon = \begin{cases} 1 & \text{if } d_T(u, v) \text{ is even,} \\ 0 & \text{otherwise,} \end{cases}$$

Proof. At first, suppose that $D_g(\alpha) \cong {}_{\Gamma}D_h(\beta)$. By Corollary 1, we have $D_g(\alpha_T) \cong {}_{\Gamma}D_g(\beta_T)$. By Theorem 1, there exist a family $(\pi_u)_{u \in V(D)} \in S_A^{V(D)}$ and $\gamma \in \Gamma$ such that

$$\rho(\beta_{\gamma T}^{\gamma}(u,v)-h) = \pi_v \rho(\alpha_T(u,v)-g)\pi_u^{-1} \text{ for each } (u,v) \in A(D).$$

Let $(u,v) \in D(T)$. Then we have $\beta_{\gamma T}^{\gamma}(u,v) = \alpha_T(u,v) = 0$. Thus $\rho(-h) = \pi_v \rho(-g)\pi_u^{-1}$. Since $(v,u) \in D(T)$, we have $\rho(-h) = \pi_u \rho(-g)\pi_v^{-1}$. Therefore it follows that

$$\pi_v = \rho(h)\pi_u\rho(-g) = \rho(-h)\pi_u\rho(g).$$

Note that $\rho(2h) = \pi_u \rho(2g) \pi_u^{-1}$.

Let P: u, v, w be any path of length two in D. Then we have

$$\rho(\beta_{\gamma T}^{\gamma}(P) - 2h) = \pi_w \rho(\alpha_T(P) - 2g)\pi_u^{-1}.$$

If $(u,v), (v,w) \in D(T)$, then we have $\beta_{\gamma T}^{\gamma}(P) = \alpha_T(P) = 0$. Thus $\rho(-2h) = \pi_w \rho(-2g)\pi_u^{-1}$. Since Q: w, v, u is a path of length two in T, we have $\rho(-2h) = \pi_u \rho(-2g)\pi_w^{-1}$. Therefore it follows that

$$\pi_w = \rho(2h)\pi_u\rho(-2g) \text{ and } \pi_w = \rho(-2h)\pi_u\rho(2g),$$

i.e.,

$$\pi_w(k+2g) = \pi_u(k) + 2h \text{ and } \pi_u(k+2g) = \pi_w(k) + 2h \text{ for } k \in A.$$

Let ord(2g) = t. Then $\pi_u(k) = \pi_u(k + 2tg) = \pi_u(k) + 2th$, i.e., $ord(2h) \mid ord(2g)$. Since the converse is clear, we have ord(2g) = ord(2h). Thus we have

$$\pi_w(k) = \pi_w(k + 2tg) = \pi_u(k) + 2th = \pi_u(k),$$

i.e.,

$$\pi_u = \pi_w$$

Since D is connected, for any $w \in V(D)$, we have

$$\pi_w = \begin{cases} \pi_u & \text{if } d_T(u, w) \text{ is even,} \\ \rho(-h)\pi_u \rho(g) & \text{otherwise,} \end{cases}$$

where $u \in V(D)$ and $d_T(u, w)$ is the distance between u and w in T. Let $(v, w) \in A(D) \setminus D(T)$. If $d_T(v, w)$ is even, then we have $\pi_v = \pi_w$, and so

$$\rho(\beta_{\gamma T}^{\gamma}(v,w) - h) = \pi_v \rho(\alpha_T(v,w) - g)\pi_v^{-1}.$$

Since $\pi_v = \pi_u, \rho(-h)\pi_u\rho(g)$, we have

$$\rho(\beta_{\gamma T}^{\gamma}(v,w)-h) = \pi_u \rho(\alpha_T(v,w)-g)\pi_u^{-1}.$$

In the case that $d_T(v, w)$ is odd, we have $\pi_w = \rho(-h)\pi_v\rho(g)$, and so

$$\rho(\beta_{\gamma T}^{\gamma}(v,w)-h) = \rho(-h)\pi_{v}\rho(g)\rho(\alpha_{T}(v,w)-g)\pi_{v}^{-1}.$$

i.e.,

$$\rho(\beta_{\gamma T}^{\gamma}(v,w)) = \pi_v \rho(\alpha_T(v,w)) \pi_v^{-1}.$$

Since $\pi_v = \pi_u, \rho(-h)\pi_u\rho(g)$, we have

$$\rho(\beta_{\gamma T}^{\gamma}(v,w)) = \pi_u \rho(\alpha_T(v,w)) \pi_u^{-1}.$$

Therefore it follows that $\rho(\beta_{\gamma T}^{\gamma}(u,v) - \epsilon^{\gamma}h) = \pi_u \rho(\alpha_T(u,v) - \epsilon g)\pi_u^{-1}$ for each $(u, v) \in A(D)$, where

$$\epsilon = \begin{cases} 1 & \text{if } d_T(u, v) \text{ is even,} \\ 0 & \text{otherwise.} \end{cases}$$

Note that $\epsilon = 0$ if $(v, w) \in D(T)$. Hence there exists an isomorphism $\sigma :< A_{\alpha_T - \epsilon_g}(w) \cup$ $\{2g\} > \longrightarrow < A_{\beta_{\gamma T} - \epsilon h}(\gamma(w)) \cup \{2h\} >$ such that

$$\beta_{\gamma T}^{\gamma}(u,v) - \epsilon^{\gamma} h = \sigma(\alpha_T(x,y) - \epsilon g) \text{ for each } (u,v) \in A(D).$$

Since $\rho(2h) = \pi_u \rho(2g) \pi_u^{-1}$, we have $\sigma(2g) = 2h$. Conversely, assume that there exist $\gamma \in \Gamma$ and a group isomorphism $\sigma :< A_{\alpha_T - \epsilon g}(w) \cup$ $\{2g\} > \longrightarrow < A_{\beta_{\gamma T} - \epsilon h}(\gamma(w)) \cup \{2h\} >$ such that

$$\beta_{\gamma T}^{\gamma}(u,v) - \epsilon^{\gamma} h = \sigma(\alpha_T(u,v) - \epsilon g) \text{ for each } (u,v) \in A(D)$$

Iwao Sato

and

$\sigma(2g) = 2h.$

Set $X = \langle A_{\alpha_T - \epsilon g}(w) \cup \{2g\} \rangle$ and $Y = \langle A_{\beta_{\gamma T} - \epsilon h}(\gamma(w)) \cup \{2h\} \rangle$. Let $\{a_1 = 1, \cdots, a_m\}$ and $\{b_1 = 1, \cdots, b_m\}$ be the representatives of A/X and A/Y, respectively. For any $c \in A$, there exist $c_{\alpha} \in A_{\alpha_T - \epsilon g}$ and $i(c) \in \{1, ..., m\}$ such that

$$c = c_{\alpha} + a_{i(c)}.$$

For a distiguished vertex $u \in V(D)$, we define a mapping $\pi_u : A \longrightarrow A$ by

$$\pi_u(c) = \sigma(c_\alpha) + b_{i(c)}$$
 for each $c \in A$.

Then π_u is well-defined, and π_u is bijective.

Since $\pi_u \mid X = \sigma$, for any $g' \in X$, we have

$$g' + c = (g' + c)_{\alpha} + a_{i(g' + c)}$$

= $g' + c_{\alpha} + a_{i(c)}$.

Futhermore, we have

$$\pi_u(g'+c) = \pi_u(g'+c_\alpha + a_{i(c)})$$

= $\sigma(g'+c_\alpha) + b_{i(c)}$
= $\sigma(g') + \sigma(c_\alpha) + b_{i(c)}$
= $\sigma(g') + \pi_u(c)$

for each $c \in A$. Since $\sigma(2g) = 2h$,

$$\rho(h)\pi_u\rho(-g) = \rho(-h)\pi_u\rho(g),$$

Now, let

$$\pi_w = \begin{cases} \pi_u & \text{if } d_T(u, w) \text{ is even,} \\ \rho(-h)\pi_u \rho(g) & \text{otherwise,} \end{cases}$$

Let $(v,w) \in D(T)$. Then we have $\beta_{\gamma T}^{\gamma}(v,w) = \alpha_T(v,w) = 0$. If $\pi_v = \pi_u, \pi_w = \rho(-h)\pi_u\rho(g)$, then we have

$$\pi_w \rho(\alpha_T(v, w) - g) \pi_v^{-1} = \rho(-h) \pi_u \rho(g) \rho(\alpha_T(v, w) - g) \pi_u^{-1}$$
$$= \rho(-h) \rho(\beta_{\gamma T}^{\gamma}(v, w))$$
$$= \rho(\beta_{\gamma T}^{\gamma}(v, w) - h).$$

In the case that $\pi_w = \pi_u, \pi_v = \rho(-h)\pi_u\rho(g)$, the same formula also holds.

Let $(v,w) \in A(D) \setminus D(T)$. If $d_T(v,w)$ is even, then we have $\pi_v = \pi_w$. If $\pi_v = \pi_w = \pi_u$, then we have

$$\pi_{w}\rho(\alpha_{T}(v,w) - g)\pi_{v}^{-1} = \pi_{u}\rho(\alpha_{T}(v,w) - g)\pi_{u}^{-1} \\ = \rho(\beta_{\gamma T}^{\gamma}(v,w) - h).$$

In the case that $\pi_v = \pi_w = \rho(-h)\pi_u\rho(g)$, the same formula also holds.

Isomorphisms of cyclic abelian covers

If $d_T(v, w)$ is odd, then we have

$$\pi_w \rho(\alpha_T(v,w) - g)\pi_v^{-1} = \rho(\beta_{\gamma T}^{\gamma}(v,w) - h)$$

Therefore it follows that

$$\rho(\beta_{\gamma T}^{\gamma}(v,w)-h) = \pi_w \rho(\alpha_T(v,w)-g)\pi_v^{-1} \text{ for each } (v,w) \in A(D).$$

Hence $D_g(\alpha_T) \cong {}_{\Gamma} D_g(\beta_T)$, which completes the proof.

Corollary 2 ([14], **Theorem 2**) Let D be a connected symmetric digraph, A a finite abelian group, $g, h \in A$ and $\alpha, \beta \in C(D)$. Furthermore, let G be the underlying graph of D, T a spanning tree of G and $\Gamma \leq Aut$ G. Assume that both ord(g) and ord(h) are odd. Then the following are equivalent:

- 1. $D_g(\alpha) \cong {}_{\Gamma} D_h(\beta).$
- 2. There exist $\gamma \in \Gamma$ and an isomorphism $\sigma : A_{\alpha_T g}(w) \longrightarrow A_{\beta_{\gamma_T} h}(\gamma(w))$ such that

$$\beta_{\gamma T}^{\gamma}(u,v) = \sigma(\alpha_T(u,v)) \text{ for each } (u,v) \in A(D)$$

and

$$\sigma(g) = h.$$

Corollary 3 Let D be a connected symmetric digraph, A a finite abelian group, $g, h \in A$ and $\alpha, \beta \in C(D)$. Furthermore, let G be the underlying graph of D, T a spanning tree of G and $\Gamma \leq Aut$ G. If G is bipartite, then the following are equivalent:

- 1. $D_g(\alpha) \cong {}_{\Gamma} D_h(\beta).$
- 2. There exist $\gamma \in \Gamma$ and an isomorphism $\sigma :< A_{\alpha_T}(w) \cup \{2g\} > \longrightarrow < A_{\beta_{\gamma_T}}(\gamma(w)) \cup \{2h\} > such that$

$$\beta_{\gamma T}^{\gamma}(u,v) = \sigma(\alpha_T(u,v)) \text{ for each } (u,v) \in A(D)$$

and

$$\sigma(2g) = 2h.$$

Let D be a connected symmetric digraph, G its underlying graph and A a finite abelian group. The set of ordinary voltage assignments of G with voltages in A is denoted by $C^1(G; A)$. Note that $C(D) = C^1(G; A)$. Furthremore, let $C^0(G; A)$ be the set of functions from V(G) into A. We consider $C^0(G; A)$ and $C^1(G; A)$ as additive groups. The homomorphism $\delta : C^0(G; A) \longrightarrow C^1(G; A)$ is defined by $(\delta s)(x, y) =$ s(x) - s(y) for $s \in C^0(G; A)$ and $(x, y) \in A(D)$. For each $\alpha \in C^1(G; A)$, let $[\alpha]$ be the element of $C^1(G; A)/Im\delta$ which contains α .

The automorphism group Aut A acts on $C^0(G; A)$ and $C^1(G; A)$ as follows:

$$\begin{aligned} (\sigma s)(x) &= \sigma(s(x)) \ for \ x \in V(D), \\ (\sigma \alpha)(x,y) &= \sigma(\alpha(x,y)) \ for \ (x,y) \in A(D), \end{aligned}$$

where $s \in C^0(G; A)$, $\alpha \in C^1(G; A)$ and $\sigma \in Aut A$. An finite group \mathcal{B} is said to have the *isomorphism extension property(IEP*), if every isomorphism between any two isomorphic subgroups \mathcal{E}_1 and \mathcal{E}_2 of \mathcal{B} can be extended to an automorphism of \mathcal{B} (see [8]). For example, the cyclic group Z_n for any $n \in N$, the dihedral group D_n for odd $n \geq 3$, and the direct sum of m copies of Z_p have the IEP.

Corollary 4 Let D be a connected symmetric digraph, G its underlying graph, A a finite abelian group, $\alpha, \beta \in C(D)$ and $g, h \in A$. Suppose that A has the IEP. If G is bipartite, then $D_g(\alpha) \cong {}_{\Gamma}D_h(\beta)$ if and only if $\beta = \sigma \alpha^{\gamma} + \delta s$ and $\sigma(2g) = 2h$ for some $\sigma \in Aut A$, some $\gamma \in \Gamma$ and some $s \in C^0(G; A)$.

Corollary 5 Let D be a connected symmetric digraph, G its underlying graph, A a finite abelian group, $\alpha, \beta \in C(D)$ and $g \in A$. Suppose that A has the IEP. If G is bipartite, then $D_g(\alpha) \cong {}_{\Gamma}D_g(\beta)$ if and only if $\beta = \sigma \alpha^{\gamma} + \delta s$ and $\sigma(2g) = 2g$ for some $\sigma \in Aut A$, some $\gamma \in \Gamma$ and some $s \in C^0(G; A)$.

Corollary 6 Let D, G, A and Γ be as in Corollary 5. If ord(2g) = 1, then the number of Γ -isomorphism classes of g-cyclic A-covers of D is equal to that of Γ -isomorphism classes of A-coverings of G.

Proof. Since ord(2g) = 1, we have $(Aut \ A)_{2g} = Aut \ A$. The rest is by Theorem 4 in [8].

Now we consider the number of Γ -isomorphism classes of cyclic A-covers of a connected bipartite symmetric digraph D. Let G be the underlying graph of D, A a finite abelian group with the IEP and $\Pi = Aut A$. For any $k \in A$, set

$$\Pi_k = \{ \sigma \in \Pi \mid \sigma(k) = k \}.$$

Then Π_k is a subgroup of Π .

Let $\Gamma \leq Aut \ D$ and $g \in A$. Set $H^1(G; A) = C^1(G; A)/Im\delta$. A action of $\Pi_{2g} \times \Gamma$ on $H^1(G; A)$ are defined as follows:

$$(\sigma, \gamma)[\alpha] = [\sigma\alpha^{\gamma}] = \{\sigma\alpha^{\gamma} + \delta s \mid s \in C^{0}(G; A)\},\$$

where $\sigma \in \Pi_2 g$, $\gamma \in \Gamma$ and $\alpha \in C^1(G; A)$. By Corollary 5, the number of Γ isomorphism classes of g-cyclic A-covers of D is equal to that of $\Pi_{2g} \times \Gamma$ -orbits on $H^1(G; A)$. Let $Iso(D, A, g, \Gamma)$ be the number of Γ -isomorphism classes of g-cyclic A-covers of D.

Theorem 3 Let D be a connected bipartite symmetric digraph, G its underlying graph, A a finite abelian group with the IEP, $g, h \in A$ and $\Gamma \leq Aut D$. Assume that $\kappa(2g) = 2h$ for some $\kappa \in Aut A$. Then

$$Iso(D, A, g, \Gamma) = Iso(D, A, h, \Gamma).$$

Proof. Similar to the proof of Theorem 3 in [14].

Let D be a connected symmetric digraph, p prime and $F_p = GF(p)$ the finite field with p elements. Let F_p^r be the r-dimensional vector space over F_p . Then the additive group F_p^r has the IEP and the general linear group $GL_r(F_p)$ is the automorphism group of F_p^r . Furthermore, $GL_r(F_p)$ acts transitively on $F_p^r \setminus \{0\}$.

Corollary 7 Let D be a connected bipartite symmetric digraph, G its underlying graph and $\Gamma \leq Aut D$. Let g, h be any two elements of $F_2^r \setminus \{0\}$. Then

$$Iso(D, F_2^r, g, \Gamma) = Iso(D, F_2^r, h, \Gamma).$$

Specially, $isc(D, F_2^r, g, \Gamma)$ is equal to that of Γ -isomorphism classes of F_2^r -coverings of G.

Proof. Note that 2g = 2h = 0. By Theorem 3 and Corollary 6.

In the case of p > 2, the similar result to Corollary 7 is obtained by [14] and [15]. For a connected symmetric digraph D, let B(D) = m - n + 1 be the *Betti-number* of D, where m = |A(D)| / 2 and n = |V(D)|. We give the enumeration of I-isomorphism classes of g-cyclic F_2^r -covers of D for any $g \in F_2^r$.

Corollary 8 Let D be a connected bipartite symmetric digraph and $g \in F_2^r$. Then the number of I-isomorphism classes of g-cyclic F_2^r -covers of D is

$$Iso(D, F_2^r, g, I) = 1 + \sum_{h=1}^r \frac{(2^B - 1)(2^{B-1} - 1)\cdots(2^{B-h+1} - 1)}{(2^h - 1)(2^{h-1} - 1)\cdots(2 - 1)},$$

where B = B(D).

Proof. By Corollary 2 of [10].

§3. Isomorphisms of cyclic F_2^r -covers

Let D be a connected symmetric digraph and $\Gamma \leq Aut D$. Let \mathcal{D}_g be the set of all g-cyclic F_2^r -covers of D for each $g \in F_2^r$, and let $\mathcal{D} = \bigcup_{g \in F_2^r} \mathcal{D}_g$. Then \mathcal{D} is the set of all cyclic F_2^r -covers of D. Let $\mathcal{D}/\cong_{\Gamma}$ and $\mathcal{D}_g/\cong_{\Gamma}$ be the set of all Γ -isomorphism classes over \mathcal{D} and \mathcal{D}_g , respectively. Furthermore, let $Iso(D, F_2^r, \Gamma)$ be the number of Γ -isomorphism classes of cyclic F_2^r -covers of D. The Γ -isomorphism class of \mathcal{D}_g containing $D_g(\alpha)$ is denoted by $[D_g(\alpha)]$.

Theorem 4 Let D be a connected bipartite symmetric digraph and $\Gamma \leq Aut D$. Then

 $Iso(D, F_2^r, \Gamma) = Iso(D, F_2^r, g, \Gamma)$ for each $g \in F_2^r$.

Proof. Let $0 = (00 \cdots 0)^t \in F_2^r$ and $\Pi = GL_r(F_2)$. For any $g \neq 0$ and any $\alpha \in C(D)$, let

$$\beta = A^{-1}(\alpha^{\gamma} - \delta s), \ A \in \Pi, \ \gamma \in \Gamma, \ s \in C^0(G; F_2^r),$$

where G is the underlying graph of D. By Corollary 4, we have $D_g(\alpha) \cong {}_{\Gamma}D_0(\beta)$. For each $g \neq 0 \in F_2^r$, we define a map $\Phi_q : \mathcal{D}_0 / \cong {}_{\Gamma} \longrightarrow \mathcal{D}_a / \cong {}_{\Gamma}$ by

$$(D_{12}, we define a map $\varphi_g \cdot D_0 = 1$ $D_g$$$

$$\Phi_g([D_0(\rho)]) = [D_g(\beta)],$$

where $D_0(\rho) \cong {}_{\Gamma} D_g(\beta)$. Since $\cong {}_{\Gamma}$ is an equivalence relation over \mathcal{D} , Φ_g is injective. By Corollary 7, we have

$$\mid \mathcal{D}_0 / \cong_{\Gamma} \mid = \mid \mathcal{D}_g / \cong_{\Gamma} \mid < \infty.$$

Thus Φ_g is a bijection. Therefore, it follows that $Iso(D, F_2^r, \Gamma) = Iso(D, F_2^r, g, \Gamma)$. \Box

Corollary 9 Let D be a connected bipartite symmetric digraph. Then the number of I-isomorphism classes of cyclic F_2^r -covers of D is

$$Iso(D, F_2^r, I) = 1 + \sum_{h=1}^m \frac{(2^B - 1)(2^{B-1} - 1)\cdots(2^{B-h+1} - 1)}{(2^h - 1)(2^{h-1} - 1)\cdots(2 - 1)},$$

Now, we state the structure of Γ -isomorphism classes of cyclic F_2^r -covers of D.

Theorem 5 Let D be a connected bipartite symmetric digraph, G its underlying graph, $\Gamma \leq Aut \ D$ and $\Pi = GL_r(F_2)$. Then any Γ -isomorphism class of cyclic F_2^r -covers of D is of the form

$$\bigcup_{g\in F_2^r} \{D_g(\beta)\mid \beta = A\alpha^\gamma + \delta s, \ A\in\Pi, \ \gamma\in\Gamma, \ s\in C^0(G;F_2^r)\},$$

where $\alpha \in C(D)$.

Proof. Let $\rho \in C(D)$, $h \neq 0 \in F_2^r$ and $[[D_h(\rho)]]$ the Γ-isomorphism class of \mathcal{D} containing $D_h(\rho)$. By the first half of the proof of Theorem 4, there exists a 0-cyclic F_2^r -cover $D_0(\alpha)$ such that $D_h(\rho) \cong {}_{\Gamma} D_0(\beta)$. Thus it follows that $[[D_h(\rho)]] = [[D_0(\beta)]]$.

In the proof of Theorem 4, the map Φ_g is a bijection from $\mathcal{D}_0/\cong_{\Gamma}$ into $\mathcal{D}_g/\cong_{\Gamma}$ for any $g \neq 0 \in F_2^r$. Thus there exists a g-cyclic F_2^r -cover $D_g(\beta)$ such that $D_0(\alpha) \cong_{\Gamma} D_g(\beta)$ for any $g \neq 0 \in F_2^r$. We define a map $\Psi_g : [D_0(\alpha)] \longrightarrow [D_g(\beta)]$ by

$$\Psi_g(D_0(\alpha_1)) = D_g(\beta_1), \ \beta_1 = A\alpha_1^{\gamma} + \delta s,$$

where $A \in \Pi$, $\gamma \in \Gamma$, $s \in C^0(G; F_2^r)$ are fixed. By Corollary 4, Ψ_g is well-defined. It is clear that Ψ_g is injective.

Now, let $D_g(\tau)$ be any element of $[D_g(\beta)]$. Then we have $D_g(\tau) \cong {}_{\Gamma}D_0(\alpha)$. By Corollary 4, there exist $B \in \Pi$, $\theta \in \Gamma$ and $t \in C^0(G; F_2^r)$ such that $\tau = B\alpha^{\theta} + \delta t$. Let

$$\eta = A^{-1} B \alpha^{\theta \gamma^{-1}} + \delta A^{-1} (t^{\gamma^{-1}} - s^{\gamma^{-1}}).$$

Then we have $\tau = A\eta^{\gamma} + \delta s$, i.e.,

$$\Psi_q(D_0(\eta)) = D_q(\tau).$$

Therefore Ψ_q is surjective, i.e., bijective.

But, by Corollary 5, we have

$$\alpha_1 = B_1 \alpha^{\kappa} + \delta s_1, \ B_1 \in \Pi, \ \kappa \in \Gamma, \ s_1 \in C^0(G; F_2^r),$$

and so

$$\beta_1 = B\alpha^{\kappa\gamma} + \delta(As_1^{\kappa} + s).$$

Hence it follows that

$$[D_g(\beta)] = \{D_g(\beta_1) \mid \beta_1 = B'\alpha^{\lambda} + \delta s', B' \in \Pi, \lambda \in \Gamma, s' \in C^0(G; F_2^r)\}.$$

By Theorem 4, the result follows.

In the case of p > 2, the results corresponding to Theorems 4 and 5 were given by [14] and [15].

§4. Isomorphisms of cyclic Z_{2^m} -covers

Let Z_n be the cyclic group of order n. Then Z_n have the IEP.

Let D be a connected symmetric digraph and G its underlying graph. Let T be a spanning tree of G and w a base vertex in G. Set $C_T(D) = C_T^1(G; Z_n) = \{\alpha_T \mid \alpha \in C(D) = C^1(G; Z_n)\}.$

Isomorphisms of cyclic abelian covers

Lemma 1 Let D be a connected symmetric digraph, G the underlying graph of D, T a spanning tree of G. Furthermore, let $\sigma \in Aut Z_n$, α , $\beta \in C(D)$ and $g \in Z_n$. Then the following are equivalent:

- 1. $\beta = \sigma \alpha + \delta s$ and $\sigma(2g) = 2g$ for some $s \in C^0(G; Z_n)$.
- 2. $\beta_T = \sigma \alpha_T$ and $\sigma(2g) = 2g$.

We shall consider the number of *I*-isomorphism classes of *g*-cyclic Z_{2^m} -covers of D, for any $g \in Z_{2^m}$. Set $\Pi_{2g} = \{\sigma \in Aut \ Z_{2^m} \mid \sigma(2g) = 2g\}$. By Corollary 5 and Lemma 1, the number of *I*-isomorphism classes of *g*-cyclic Z_{2^m} -covers of D is equal to that of Π_{2g} -orbits on $C_T^1(G; Z_{2^m})$.

Theorem 6 Let D be a connected bipartite symmetric digraph and $n = 2^m$. Let $g \in Z_{2^m}$ and $ord(2g) = 2^{m-\mu}$. Set B = B(D). Then the number of I-isomorphism classes of g-cyclic Z_{2^m} -covers of D is

$$Iso(D, Z_{2^m}, g, I) = \begin{cases} 2^{mB-\mu} + 2^{(m-\mu)B-1}(2^{\mu(B-1)} - 1)/(2^{B-1} - 1) & \text{if } \mu \neq m \text{ and } B > 1, \\ 2^{m-\mu-1}(\mu+2) & \text{if } \mu \neq m \text{ and } B = 1, \\ 2^{m(B-1)+1} - 1 + (2^{m(B-1)} - 1)/(2^{B-1} - 1) & \text{if } \mu = m \text{ and } B > 1, \\ m+1 & \text{if } \mu = m \text{ and } B > 1, \\ f \mu = m \text{ and } B > 1, \\ f \mu = m \text{ and } B = 1, \end{cases}$$

Proof. By the above note and Burnside's Lemma, we have

$$Iso(D, Z_{2^{m}}, g, I) = \frac{1}{|\Pi_{2g}|} \sum_{\rho \in \Pi_{2g}} |C_{T}(D)^{\rho}|$$

Let $F(\rho) = \{h \in Z_{2^m} \mid \rho(h) = h\}$. Then, by Corollary 3 of [8], we have $|C_T(D)^{\rho}| = |F(\rho)|^{B(D)}$.

But we have

$$\Pi_{2g} = \{ \lambda \in Z_{2^m} \mid (\lambda, 2^m) = 1 \text{ and } \lambda 2g = 2g \}.$$

Then

$$\lambda \in \Pi_{2g} \ \Leftrightarrow \ 2\lambda g \equiv 2g \ (mod \ 2^m) \ \Leftrightarrow \ 2g(\lambda-1) \equiv 0 \ (mod \ 2^m) \ \Leftrightarrow \ \lambda-1 \in < ord(2g) > .$$

Thus we have $|\Pi_{2g}| = n/ord(2g)$. That is, $|\Pi_{2g}| = 2^{\mu}$ if $2g \in K_{\mu}(m)$, where $K_{\mu}(m) = \{k \in Z_{2^m} \mid k \in 2^{\mu} >, k \notin 2^{\mu+1} >\}$. Let $ord(2g) = 2^{m-\mu}$. If ord(2g) = 1, then $2g = 2^m$. Otherwise $\Pi_{2g} = \{2^{m-\mu}\nu + 1 \mid \nu = 0, 1, \dots, 2^{\mu-1}\}$.

By Lemma 3 of [8], $|F(\rho)| = 2^{\mu}$ if $\rho - 1 \in K_{\mu}(m)$. Thus we have

$$| \{ \lambda \in \Pi_{2g} | | F(\lambda) | = 2^{m-\mu+t} \} | = 2^{\mu-t-1} (0 \le t \le \mu - 1), | \{ \lambda \in \Pi_{2g} | | F(\lambda) | = 2^m \} | = 1.$$

Furthermore, we have

$$| \{ \lambda \in \Pi_{2g} \mid | F(\lambda) |= 1 \} |= 0 \ if \mu = m.$$

Therefore the result follows. Specially, the third and fourth parts of the formula are given by Theorem 8 of [8]. $\hfill \Box$

In Table 1, we give some values of $Iso(D, Z_{2^6}, g, I)$.

$\mu \setminus B$	1	2	3	4	5	6
1	48	2560	147456	8912896	553648128	34896609280
2	32	1408	75776	4489216	277348352	17456693248
3	20	736	38144	2246656	138690560	8728477696
4	12	376	19104	1123456	69345792	4364240896
5	7	190	9556	561736	34672912	2182120480
6	7	190	9556	561736	34672912	2128120480

Table 1

Acknowledgment. The present work was supported by Grant-in-Aid for Science Research (C).

References

- Y. Cheng and A. L. Wells, Jr., Switching classes of directed graphs, J. Combin. Theory Ser. B, 40 (1986), 169-186.
- [2] K. Dresbach, Über die strenge Isomorphie von Graphenüberlagerungen, Diplomarbeit, Univ. of Cologne, 1989.
- [3] J. L. Gross and T. W. Tucker, Generating all graph coverings by permutation voltage assignments, Discrete Math., 18 (1977), 273-283.
- [4] J. L. Gross and T. W. Tucker, *Topological Graph Theory*, Wiley-Interscience, New York, 1987.
- [5] M. Hofmeister, Counting double covers of graphs, J. Graph Theory, 12 (1988), 437-444.
- [6] M. Hofmeister, Graph covering projections arising from finite vector spaces over finite fields, submitted.
- [7] M. Hofmeister, Isomorphisms and automorphisms of graph coverings, Discrete Math., 98 (1991), 175-185.
- [8] S. Hong, J. H. Kwak and J. Lee, Regular graph coverings whose covering transformation groups have the isomorphism extension property, Discrete Math., 148 (1996), 85-105.
- [9] A. Kerber, Algebraic Combinatorics via Finite Group Actions, BI-Wiss. Verlag, Mannheim, Wien, Zürrich, 1991.
- [10] J. H. Kwak, J. Chun and J. Lee, Enumeration of regular graph coverings having finite abelian covering transformation groups, SIAM. J. Disc. Math., 11 (1998), 273-285.
- [11] J. H. Kwak and J. Lee, Isomorphism classes of graph bundles, Canad. J. Math., XLII (1990), 747-761.

- [12] H. Mizuno, J. Lee and I. Sato, *Isomorphisms of connected cyclic abelian covers of symmetric digraphs*, submitted.
- [13] H. Mizuno and I. Sato, Characteristic polynomials of some covers of symmetric digraphs, Ars Combinatoria, 45 (1997), 3-12.
- [14] H. Mizuno and I. Sato, Isomorphisms of cyclic abelian covers of symmetric digraphs, Ars Combinatoria, 54 (2000), 51-64.
- [15] H. Mizuno and I. Sato, Isomorphisms of some covers of symmetric digraphs (in Japanese), Trans. Japan SIAM., 5-1 (1995), 27-36.
- [16] I. Sato, Isomorphisms of some graph coverings, Discrete Math., 128 (1994), 317-326.
- [17] D. A. Waller, Double covers of graphs, Bull. Austral. Math. Soc., 14 (1976), 233-248.

Author's address:

Iwao Sato, Oyama National College of Technology, Oyama, Tochigi, 323-0806, JAPAN, Email: isato@oyama-ct.ac.jp