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Abstract

In this paper we study the concept of S-linear operator and we show some of
its properties and applications to the foundations of Quantum Mechanics. This
new operators are a generalization of the linear operators defined between two
finite dimensional vector spaces. A generalization to the infinite dimensional
case of the space of tempered distributions, endowed with the new operation of
superposition introduced by the author in 1998.
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Introduction

Let V = (X, +, · ) and W = (Y, +, · ) be two finite-dimensional vector spaces
on K (R or C), we know that a function f : X → Y is called linear if, for each
x, y ∈ X and for each λ ∈ K, one has f(λx + y) = λf(x) + f(y). Moreover, we
recall that f ∈ Hom(V, W ) if and only if for every ∀k ∈ N, ∀x = (xi)k

i=1 ∈ Xk

and λ = (λi)k
i=1 ∈ Kk, setting

∑
k λx =

∑k
i=1 λixi and f(x) = (f(xi))k

i=1, one has
f(

∑
k λx) =

∑
k λf(x) i.e., the image of the λ-linear combination of a family is the

λ-linear combination of the image of the family under f ; in indexed notation,

f

(
k∑

i=1

λixi

)
=

k∑

i=1

λif(xi).

The intention of this paper is to give a similar definition for a certain class of families
of vectors indexed by Rk, using, as coefficients system, certain maps from Rk to K
and, more generally, using the Schwartz tempered distributions from Rk to K (that
are regarded as “non-locally defined” families in K indexed by Rk). This requires
the definition of linear superposition of the author: if v = (vi)i∈Rk is an S-family in
S ′(Rn,K) i.e., if, for every φ ∈ S(Rn,K), the function v(φ) : Rk → K : i 7→ vi(φ),
belongs to S(Rk,K) (see section 0) and if λ ∈ S ′(Rk,K) is a tempered distribution
we set ∫

Rk

λv := λ ◦ v̂ = t(v̂)(λ),
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where we have used the following operator

v̂ : S(Rn,K) → S(Rk,K) : φ 7→ v(φ).

The idea is very natural: an operator L : S ′n → S ′m is calledd S-ultralinear if, for
every k ∈ N, λ ∈ S ′k and v ∈ S(Rk,S ′n), one has

L

(∫

Rk

λv

)
=

∫

Rk

λL(v).

History

The paper finds its origin in the Rigged Hilbert space formulation of quantum
mechanics, the formulation developed by Bohm and Gadella in the booklet published
in the series “Lecture notes in Physics” of Springer Verlag. The aim of that report was
to present a rigorous mathematics framework for the Dirac formalism. But the theory
presented did not accommodate all the features of Dirac’s formulation of Quantum
Mechanics.

It is known that Von Neumann’s Hilbert space formulation does not fulfill the
following feature of Dirac calculus:

1) Some state of physical system can’t be normalizable in the Hilbert sense;
2) Some state that is not normalizable in the Hilbert sense can be normalized in

the sense of Dirac;
3) There are some continuous families of vector states for which is reasonable to

write: ∫

R
axvxdx.

4) The functions representing vector states are always smooth, i.e. of class C∞;
5) It’s possible to calculate a kind of scalar product among the non normalizable

state;
6) It is possible to decompose a vector in the following way:

u =
∫

R
〈u, vx〉vxdx.

1’) The observables are defined in the whole space of vector states;
2’) the operation among them are always possible,in particular, the commutation

relation are identities and not inclusion;
3’) The observables could be treated as continuous operator;
4’) The Hermitian operators have a complete system of eigenkets, with a system

of eigenvalues that can be also continuous;
5’) It is possible to decompose an operator as follows

A(u) =
∫

R
a(x)〈u, vx〉vxdx.
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6’) The observables are linear with respect to the superpositions of a continuous
family of states:

A(u) = A(
∫

R
〈u, vx〉vxdx) =

∫

R
〈u, vx〉A(vx)dx.

1”) Finally, it’s possible to superpose certain continuous families of solutions of
linear differential equations obtaining a new state that is still a solution of the equa-
tion.

The Rigged Hilbert space formulation of quantum mechanics gives an answer to
the Dirac’s requisitions 1), 4), partially to 6), 1’), 2’), 3’), 4’), partially to 5’).

The S-algebra in the space of tempered distributions of the author of the present
paper gives a unitary answer to all the requests, as we shall show in the paper.

Preliminaries and notations on tempered distributions

In this paper we shall use the following notations:

1) n,m, h, k are natural numbers, N(≤ k) = {i}k
i=1;

2) µn is the Lebesgue measure on Rn; (·) = I(R,C) is the immersion of R in C and,
if X is a non-empty set, IX = (·)X is the identity map on X;

3) if X and Y are two topological vector spaces on K, Hom(X, Y ) is the set of all
the linear operators from X to Y , L(X, Y ) is the set of all the linear and continuous
operators from X to Y , X ′ = Hom(X,K) is the algebraic dual of X and X∗ = L(X,K)
is the topological dual of X;

4) Sn = Sn(K) := S(Rn,K) is the (n,K)-Schwartz space, that is to say the set of
all the smooth functions (i.e., of class C∞) of Rn in K rapidly decreasing at infinity
(the functions and all their derivatives tend to 0 at ±∞ faster than the reciprocal of
any polynomial):

S(Rn,K) = {f ∈ C∞(Rn,K) : ∀α, β ∈ Nn
0 lim
|x|→∞

|xβDαf(x)| = 0}.
5) S(n) is the standard Schwartz topology on Sn, it is a topology generated by a

metric: in fact, Sn is closed under differentiation and multiplication by polynomials,
for each nonnegative integer k, define pk on Sn by pk(f) = sup

x∈Rn

maxα,β∈Nn
0

0≤|α|,|β|≤k

|xβDαf(x)|.

Each pk is a norm on Sn, and pk(f) ≤ pk+1(f) for all f ∈ Sn, the pair (Sn, (pk)k∈N0)
is a countably complete normed space and so a Frèchet space (see also [5] and [1]);

6) S ′n := S ′(Rn,K) is the space of tempered distributions from Rn to K, that is,
the topological dual of the topological vector space (Sn,S(n)) i.e., S ′n=(Sn,S(n))∗;

7) if x ∈ Rn, δx is the distribution of Dirac on Sn centered at x, i.e., the functional:
δx : Sn → K : φ 7→ φ(x);

8) if f ∈ OM (Rn,K) = {g ∈ C∞(Rn,K) : ∀φ ∈ Sn(K), φg ∈ Sn(K)}, then the
functional [f ] = [f ]n : Sn → K : φ 7→ ∫

Rn fφdµn is a tempered distribution, called the
regular distribution generated by f (see [1, p. 110]);
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9) Let a, b ∈ R 6= = R\{0}, S
(a,b)

is the (a, b) -Fourier-Schwartz transformation, i.e.,

the operator S
(a,b)

: Sn→Sn, such that, for all f ∈ Sn and ξ ∈ Rn, one has

S
(a,b)

(f)(ξ) =
(

1
a

)n ∫

Rn

fe−ib(·|ξ)dµn =
[(

1
a

)n

e−ib(·|ξ)
]

(f),

where (· | ·) is the standard scalar product on Rn. Moreover, we recall that S
(a,b)

is a homeomorphism with respect to the standard topology S(n) and, concerning its
inverse, for every x ∈ Rn and g ∈ Sn,one has

S
(a,b)

− (g)(x) =
( |b|a

2π

)n ∫

Rn

geib(x|·)dµn = S
(2π/(|b|a),−b)

(g)(x);

10) Let a, b ∈ R6=, F
(a,b)

is the (a, b)-Fourier transformation on the space of tempered

distributions, i.e., the operator F
(a,b)

: S ′n→S ′n, such that, for all u ∈ S ′n and for every

φ ∈ Sn, one has F
(a,b)

(u)(φ) = u( S
(a,b)

(φ)), i.e., the transpose of S
(a,b)

: F
(a,b)

= t( S
(a,b)

). Moreover, we recall that F
(a,b)

is a homeomorphism in the weak* topology σ∗n =

σ(S ′n,Sn) and that one has F
(a,b)

−= F
(2π/(|b|a),−b)

and, for all α ∈ Nn
0 , F

(a,b)
(u(α)) =

(bi)αIαRn F
(a,b)

(u) and F
(a,b)

(IαRnu) = ( i
b )

α( F
(a,b)

(u))(α).

§0. Some concepts of S−ultralinear algebra

Let I be a non-empty set, we denote by s(I,S ′n) the space of all the families in
S ′n indexed by I, i.e., the set of all the surjective maps from I onto a subset of S ′n.
Moreover, if v is one of these families, for each p ∈ I, the distribution v(p) is denoted
by vp, and v also by (vp)p∈I . The set s(I,S ′n) is a vector space with respect to the
following standard operations: the addition + : s(I,S ′n)2 → s(I,S ′n) : (v, w) 7→ v +w,
where v + w = (vp + wp)p∈I , i.e., (v + w)p = vp + wp; the multiplication by scalars
· : K× s(I,S ′n) → s(I,S ′n) : (λ, v) 7→ λv where λv = (λvp)p∈I , i.e., (λv)(p) = (λv)p =
λvp. Moreover, we shall use the following definitions of D. Carf̀i:

Definition 0.1 (family of tempered distributions of class S). Let v ∈
s(Rm,S ′n) be a family of distributions. The family v is called family of class S or
S-family if, for each φ ∈ Sn, the function v(φ) : Rm → K, defined by v(φ)(p) = vp(φ),
for each p ∈ Rm, belongs to the space Sm. The set of all these families is denoted by
S(Rm,S ′n).

Definition 0.2 (operator generated by an S-family). Let v ∈ S(Rm,S ′n) be
a family of class S. The operator generated by the family v (or associated
with v) is the operator v̂ : Sn → Sm : φ 7→ v(φ).

The set S(Rm,S ′n) is a subspace of the vector space (s(Rm,S ′n), +, ·) and for
each v ∈ S(Rm,S ′n) the operator v̂ is linear and the map (·)∧ : S(Rm,S ′n) →
Hom(Sn,Sm) : v 7→ v̂ is an injective linear operator.
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Theorem 0.1 (basic lemma for the superpositions of an S-family). Let
a ∈ S ′m and v ∈ S(Rm,S ′n) be an S-family. Then, the composition u = a ◦ v̂, i.e., the
functional u : Sn → K : φ 7→ a(v̂(φ)), is a tempered distribution.

Proof. Let a ∈ S ′m. Because the subspace span({δy}y∈Rm) is sequentially dense in
S ′m (see [2, p. 205]), there is a sequence of distributions (αk)k∈N in span({δy}y∈Rm)
such that σ∗n lim

k→+∞
αk = a. Now, since αk ∈ span({δy}y∈Rm) there exist a finite set

{yi}h
i=1 in Rm and {λi}h

i=1 in K such that αk =
∑h

i=1 λiδyi
, thus αk ◦ v̂ =

∑h
i=1 λivyi ,

hence, for every k ∈ N, the composition αk ◦ v̂ belongs to S ′n; moreover, let τ be the
topology of the pointwise convergence in Hom(Sn,K), one has τ lim

k→+∞
αk◦v̂ = a◦v̂, in

fact lim
k→+∞

(αk ◦ v̂)(φ) = lim
k→+∞

αk(v̂(φ)) = a(v̂(φ)), so we have that (αk ◦ v̂)k∈N
τ→ a◦ v̂

and that {αk ◦ v̂}k∈N ⊂ S ′n, then, by the completeness theorem of S ′n (see [4, p. 602]),
one has a ◦ v̂ ∈ S ′n.

Definition 0.3 (linear superpositions of an S-family). Let v ∈ S(Rm,S ′n)
and a ∈ S ′m. The distribution a ◦ v̂ = t(v̂)(a) is called the (linear) superposition
of v with respect to (the system of coefficients) a or the ultralinear com-
bination of v with respect to (the system of coefficients) a and it is denoted

by
∫

Rm

av. Moreover, if u ∈ S ′n and there exists an a ∈ S ′m such that u =
∫
Rm av,

u is said to be an S ′-linear superposition of v. Finally, we define linear su-
perposition of v the distribution

∫
Rm v :=

∫
Rm 1S′mv, where 1S′m := [1(Rm,K)] is the

distribution generated by the K-constant functional on Rm of value 1.

Definition 0.4 (of S-ultralinear independence). Let v ∈ S(Rm,S ′n) v is said

S-ultralinearly independent, if one has (u ∈ S ′m ∧
∫

Rm

uv = 0S′n) ⇒ u = 0S′m .

Definition 0.5 (of S-linear hull). Let v ∈ S(Rm,S ′n). The S-ultralinear
hull of v is the set S uspan(v) = {u ∈ S ′n : ∃a ∈ S ′m : u =

∫
Rm av}.

Definition 0.6 (system of S-generators). Let v ∈ S(Rm,S ′n) . v is called
system of S-generators for V ⊆ S ′n if and only if S uspan(v) = V .

Definition 0.7 (of S-basis). Let v ∈ S(Rm,S ′n) and let V ⊆ S ′n. v is an S-basis
of V if it is S-ultralinearly independent, and one has S uspan(v) = V .

It’s possible to prove that if u ∈ S uspan(v) and v is ultralinearly independent

then there exists a unique a ∈ S ′m such that u =
∫

Rm

av. So we can give the following

Definition 0.8 (system of coordinates). Let v ∈ S(Rm,S ′n) be an S -ultralinearly
independent family and w ∈ S uspan(v). The only tempered distribution a ∈ S ′m such

that w =
∫

Rm

av is denoted by [w|v] and is called the system of coordinates of w

in v.

§1. S−operators and S−ultralinear operators

Definition 1.1 (image of a family of distributions). Let W ⊆ S ′n, A : W →
S ′m be an operator and v = (vp)p∈ Rk be a family of tempered distributions in W ,
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i.e., such that {vp}p∈Rk ⊆ W. The image of v under A is the family in S ′m A(v) =
(A(vp))p∈Rk , i.e., the family such that, for all p ∈ Rk, one has A(v)p = A(vp).

We can read the above definition saying that “the image of a family of vectors is
the family of the images of vectors”.

Definition 1.2 (operator of class S). Let W ⊆ S ′n and L : W → S ′m be an
operator. L is an S-operator or operator of class S if, for each natural k and for
each v ∈ S(Rk,S ′n), such that {vp}p∈Rk ⊆ W, one has L(v) ∈ S(Rk,S ′m).

We can read the above definition as follows: “L is of class S if the image of an
S-family is an S-family”. In the following we put σn = σ(Sn,S ′n).

Example 1.3 (the transpose). Let A : Sn → Sm be a (σn, σm)-continuous
operator. A is transposable (i.e., for every a ∈ S ′m, a ◦A is in S ′n) and its transpose is
tA : S ′m → S ′n : a 7→ a◦A. Let v ∈ S(Rk,S ′n), one has, by definition, tA(v)p = tA(vp),
and hence one infers

tA(v)(φ)(p) = tA(v)p(φ) = tA(vp)(φ) = vp(A(φ)) = v(A(φ))(p),

so, taking into account that v is an S-family, one has tA(v)(φ) = v̂(A(φ)) ∈ Sk.
Concluding one has tA(v) ∈ S(Rk,S ′n), and thus the operator tA, sending S-family
in S-family, is an S-operator.

Application 1.1. Let L : S ′n → S ′n be a differential operator with constant
coefficients and v be an S-family in S ′n. Then L(v) is an S-family, in fact L is the
transpose of a certain operator. For instance, the family (δx)x∈Rn is obviously an S-
family, and so the families of derivatives (δ(i)

x )x∈Rn are S-families for every multi-index
i.

Definition 1.3 (S-ultralinear operator). Let L : S ′n → S ′m be an S-operator.
L is called S-ultralinear operator if, for each natural k, for each v ∈ S(Rk,S ′n)
and for every a ∈ S ′k, one has L(

∫
Rk av) =

∫
Rk aL(v). The set of all the S-ultralinear

operators from S ′n to S ′m is denoted by S uHom(S ′n,S ′m).

In the following we denote by L(Sn,Sm) the set of all the linear and continuous
operator among the two topological vector spaces (Sn,S(n)) and (Sm,S(m)), since
these spaces are complete and metrizable, L(Sn,Sm) is also the set of all the linear
and (σn, σm)-continuous operator (see [5, p. 258, Corollary]), i.e., the set of all the
transposable linear operators (see [5, p. 254, § 12, Proposition 1]) among those spaces.
It’s, at this point, obvious that the two vector spaces S(Rm,S ′n) and L(Sn,Sm) are
isomorphic, being the map (·)∧ : S(Rm,S ′n) → L(Sn,Sm) : v 7→ v̂ an isomorphism,
moreover, its inverse is the map (·)∨ : L(Sn,Sm) → S(Rm,S ′n) : A 7→ A∨ := (δx ◦
A)x∈Rm . Now, we show the intimate essence of the S -ultralinear operator defined on
S ′n.

Definition 1.4 (superposition of a family with respect to a family). Let

v ∈ s(Rk,S ′m) and w ∈ S(Rm,S ′n). The family in S ′n
∫

Rm

vw :=
(∫

Rm

vpw

)

p∈Rk

is

called the superposition of w with respect to v.

If v ∈ S(Rk,S ′m) then
∫

Rm

vw ∈ S(Rk,S ′n) and
(∫

Rm

vw

)∧
= v̂ ◦ ŵ. In this case,

∫

Rm

vw is denoted by vw and it’s called product of v by w.
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Lemma 1.1 (the image under a transpose operator). Let B ∈ L(Sn,Sm)

and v ∈ S(Rk,S ′m). Then, tB(v) =
∫

Rk

vB∨, so in particular, tB is an S-operator.

Proof. For each p ∈ Rk, one has
(∫

Rk

vB∨
)

p

=
∫

R
vpB

∨ = vp ◦ (B∨)∧ = vp ◦B = tB(vp) = tB(v)(p),

and hence
∫

Rk

vB∨ = tB(v).

Theorem 1.1 (S-ultralinearity of a transpose operator). Let B ∈ L(Sn,Sm)
and v ∈ S(Rk,S ′m). Then, for each a ∈ S ′k one has tB(

∫
Rk av) =

∫
Rk a tB(v).

Proof. One has

tB

(∫

Rk

av

)
=

(∫

Rk

av

)
◦B = (a ◦ v̂) ◦B = a ◦ (v̂ ◦B) =

=
∫

Rk

a (v̂ ◦B)∨ =
∫

Rk

a

(∫

Rk

vB∨
)

=
∫

Rk

a tB(v).

Application 1.2. As a simple application, we prove the formula: u′ =
∫

R
uδ′,

where δ′ is the S-family in S ′1 (δ′p)p∈R. Let δ be the Dirac family of S ′1, then for each

u ∈ S ′1, one has u =
∫

R
uδ, and thus

u′ = D

(∫

R
uδ

)
=

∫

R
uD(δ) =

∫

R
uδ′.

Theorem 1.2 (characterization of S-ultralinearity). Let L : S ′n → S ′m.
Then, L is S-ultralinear if and only if there exists a B ∈ L(Sm,Sn) such that L =
t(B).

Proof. Sufficiency. Follows from the above theorem. Necessity. Let δ be the
Dirac’s family in S ′n, one has

L(u) = L

(∫

Rn

uδ

)
=

∫

Rn

uL(δ) = t(L(δ)∧)(u),

so L = t(L(δ)∧).

Application 1.3 (the case of a continuous range of fundamental states in quan-
tum mechanics, see [3, p.66]). A pure state σ of a quantum system is a monodimen-
sional subspace of the space S ′n, each ψ ∈ σ is a vector-state representing σ. Let
ψ = (ψp)p∈Rm be an S-basis of S ′n and α be an observable of the system, we assume
α ∈ S uEnd(S ′n). One has

α(ψp) =
∫

Rm

[α(ψp) | ψ]ψ,
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the family
(α)ψ = ([α(ψp) | ψ])p∈Rm

is called the representation of α in ψ. Let now α, β be two observables; one has

α(β(ψp)) = α

∫

Rm

[β(ψp) | ψ]ψ =
∫

Rm

(β) p
ψ α(ψ) =

=
∫

Rm

(β) p
ψ

∫

Rm

(α)ψψ =
∫

Rm

(∫

Rm

(β
) p

ψ

(α)ψ)ψ,

so (αβ)ψ = (α)ψ(β)ψ. We have, moreover, u =
∫

Rm

[u | ψ]ψ, the non localized-family

(u)ψ = [u | ψ] is called the representation of α in ψ, so one has

α(u) =
∫

Rm

(u)ψα(ψ) =
∫

Rm

(u)ψ

∫

Rm

(α)ψψ =
∫

Rm

(∫

Rm

(u)ψ(α)ψ

)
ψ,

thus (α(u))ψ =
∫

Rm

(u)ψ(α)ψ. If we regard the multiplication by a number as an

observable: Mc(u) = cu, we have

Mc(u) = cu = c

∫

Rm

(u)ψψ =
∫

Rm

(u)ψ(cψ) =
∫

Rm

c(u)ψψ,

hence Mc(ψp) =
∫

Rm

c(ψp)ψψ =
∫

Rm

cδpψ, so the S-family representing the observ-

able Mc is the family (cδp)p∈Rm , i.e., the family cδ. The correspondence

(·)ψ : S uEnd(S ′n) → S(Rm,S ′n)

is bijective, in fact, (α)ψ = (β)ψ implies

(α(u))ψ =
∫

Rm

(u)ψ(α)ψ =
∫

Rm

(u)ψ(β)ψ = (β(u))ψ,

and thus αu = βu i.e., α = β, so it’s injective. It’s also surjective, in fact, if (vp)p∈Rm

is an S-family and we put

α(u) =
∫

Rm

(u)ψ(
∫

Rm

vψ)

one has

α(ψp) =
∫

Rm

(ψp)ψ

(∫

Rm

vψ

)
=

∫

Rm

δp

(∫

Rm

vψ

)
=

(∫

Rm

vψ

)

p

=
∫

Rm

vpψ,

and thus (α)ψ = v. It’s simple to prove that ψ is an S-basis of the entire space if and

only if tψ̂ is bijective and in this case one has uψ = (tψ̂)−(u) and (α) p
ψ =

∫

Rn

αψpψ
−.

Let X : S ′1 → S ′1 : u 7→ (·)u be the position operator and let f be the (1/,−1/~)-
Fourier family, then one has

(X) p
f =

∫

R
Xfpf

− = F
(1,1/~)

((·)fp) =
(

i

1/~

)1

(2π F
(1,−1/~)

− (fp))′ = i~(fp)′f = i~δ′p.
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Let P : S ′1 → S ′1 : u 7→ −i~u′ be the momentum operator of a particle. One has

(P ) p
f =

∫

R
Pfpf

− =
∫

R
pfpf

− = p(fp)f = pδp.

and hence (P )f = (·)δ. Let

T : S ′1 → S ′1 : u 7→ ~2

2m
u′′ =

1
2m

P 2

be the kinetic energy operator of a nonrelativistic particle, one has

(T ) p
f =

∫

R
Tfpf

− =
∫

R

1
2m

P 2fpf
− =

1
2m

∫

R
p2fpf

− =

=
1

2m
p2

∫

R
fpf =

1
2m

p2(fp)f =
1

2m
p2δp.

§2. Spectral theorems

First of all we recall, for convenience of the reader, some basic notions from theory
of distributions.

Definition 2.1. We denote by OM (Rn,K) the space of all f ∈ C∞(Rn,K) such
that for every φ ∈ Sn one has φf ∈ Sn. The set OM (Rn, K) is said to be the space
of C∞ functions from Rn to K slowly increasing at infinity.

Proposition 2.1. Let f ∈ C∞(Rn,K). The following are equivalent conditions:

1. For all p ∈ Nn
0 there is a polynomial Pp such that ∀x ∈ Rn, |∂pf(x)| ≤ |Pp(x)|.

2. For all φ ∈ Sn one has φf ∈ Sn.
3. For every p ∈ Nn

0 and for every φ ∈ Sn the function (∂pf)φis bounded in Rn.

The standard topology of OM (Rn,K) is the locally convex topology defined by
the family of seminorms γφ,p(φ) = supx∈Rn |φ(x)∂pf(x)| where φ ∈ S(Rn,K) and
p ∈ Nn

0 . This topology does not have a countable basis. Also, it can be shown
that OM (Rn,K) is a complete space. A sequence (or filter) (fj)j∈N converges to zero
in OM (Rn,K) if and only if for every φ ∈ Sn and for every p ∈ Nn

0 , the sequence
(φ∂pfj)j∈N converges to zero uniformly on Rn. Or, equivalently, for every φ ∈ Sn,
(φfj)j∈N converges to zero in Sn. A set B is bounded in OM (Rn, K) if and only if
for all p ∈ Nn

0 there is a polynomial Pp such that ∀x ∈ Rn, ∀f ∈ B, |∂pf(x)| ≤ Pp(x).
Moreover, the bilinear map Φ : OM (Rn,K) × Sn → Sn : (φ, f) 7→ φf is separately
continuous.

Proposition 2.2. Let A ∈ L(Sn,Sm) and f ∈ OM (Rm,K). Then, the mapping
fA : Sn → Sm : φ 7→ fA(φ) is a linear and c ontinuous operator.

Proof. First of all we note that fA is well defined in fact (fA)(φ) = fA(φ) ∈
Sm because f ∈ OM ( Rm,K) and A(φ) ∈ Sm. Moreover, the bilinear application
Φ : OM (Rm,K)×Sm → Sm : (f, ψ) 7→ fψ is separately continuous and because
(fA)(φ) = fA(φ) = Φ(f, A(φ)) i.e. fA = Φ(f, A) := Φ(f, ·) ◦ A the operator fA is
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the composition of two linear continuous maps and then is a linear and continuous
operator.

Let A ∈ L(Sn,Sm) and f ∈ OM (Rm,K). The operator fA : Sn → Sm : φ 7→ fA(φ)
is called the product of A by f .

Proposition 2.3. Let A,B ∈ L(Sn,Sm) and f, g ∈ OM (Rm,K). Then, one has

1) (f + g)A = fA + gA; f(A + B) = fA + fB; 1OM
A = A;

2) the map Φ : OM (Rm,K)×L(Sn,Sm) → L(Sn,Sm) : (f, A) 7→ fA is a bilinear
map.

Proof. It’s a straightforward computation.

The above bilinear application is called multiplication of operators by OM func-
tions.

Remark 2.1. It’s easy to see that the algebraic structure (OM (Rn,K),+, ·) is a
commutative ring with identity, where: · : OM (Rn,K)×OM (Rn,K) →OM (Rn,K) :
(f, g) 7→ fg (obviously if f, g ∈ OM (Rn,K) one has fg ∈ OM (Rn,K)) and 1(OM ,+,·) =
1(Rn,K)). Moreover, one has that Sn is an ideal of OM (Rn,K).

Proposition 2.4. Let · the operation defined in the above theorem. Then, the
algebraic structure (L(Sn,Sm), +, ·) is a left module over the ring (OM (Rm,K), +, ·).

Proof. Recall the preceding theorem, we have to prove only the pseudo-associative
law, i.e. we have to prove that ∀f, g ∈ OM (Rm,K), ∀A ∈ L(Sn,Sm), (fg)A = f(gA).
In fact, for each φ ∈ Sn, one has [(fg)A](φ) = (fg)A(φ) = f(gA(φ)) = f(gA)(φ)) =
[f(gA)](φ).

Definition 2.2 (product of a family by an OM function). Let v ∈ S(Rm,S ′n) and
f ∈ C∞(Rm,K). The product of v by f is the family fv = (f(p)vp)p∈Rm .

Theorem 2.1. Let v ∈ S(Rm,S ′n) and f ∈ OM (Rm,K). Then, the family fv lies
in S(Rm,S ′n). Moreover, one has (fv)∧ = fv̂.

Proof. Let φ ∈ Sn, one has

(fv)(φ)(p) = (fv)p(φ) = (f(p)vp)(φ) = f(p)vp(φ) = f(p)v̂(φ)(p)

and hence (fv)(φ) = fv̂(φ) ∈ Sm. Thus, one has fv ∈ S(Rm,S ′n), ∀φ ∈ Sn,
(fv)∧(φ) = fv̂(φ), i.e. (fv)∧ = fv̂, where fv̂, is the product of v̂ by f and fv̂ ∈
L(Sm,Sn).

Theorem 2.2. Let f, g ∈ OM (Rm,K), v, w ∈ S(Rm,S ′n). Then, one has

1) (f + g)v = fv + gv; f(v + w) = fv + fw; 1OM v = v.

2) The map Φ : OM (Rm,K)× S(Rm,S ′n) → S(Rm,S ′n) : (f, v) 7→ fv is a bilinear
map.

Proof. 1) For all p ∈ Rm, one has

[(f + g)v](p) = (f + g)(p)vp = (f(p) + g(p))vp = f(p)vp + g(p)vp = (fv)p + (gv)p,

i.e. (f + g)v = fv + gv; For all p ∈ Rm, one has

[f(v + w)](p) = f(p)(v + w)p = f(p)(vp + wp) = f(p)vp + f(p)wp = (fv)p + (fw)p,
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i.e. f(v + w) = fv + fw. For all p ∈ Rm, one has (1(Rm ,K) v)(p) = 1(Rm ,K) (p)vp = vp;
i.e. 1OM

v = v. 2) is straightforward.
The bilinear application of the point 2) of the preceding theorem is called multi-

plication of families by OM functions.

Theorem 2.3 (of structure). Let · the operation defined above. Then, the
algebraic structure (S(Rm,S ′n), +, ·) is a left module over the ring (OM (Rm,K), +, ·).

Proof. It’s analogous to the proof of the proposition 2.4.

Theorem 2.4 (of isomorphism). The application (·)∧ : S(Rm,S ′n) → L(Sn,Sm)
is a module isomorphism.

Proof. It follows easily from theorem 2.1.

In the following we shall use the notation S uEnd(S ′n) = S uHom(S ′n,S ′n). Let
D, C be two vector spaces and A ∈ Hom(D, C). The set of all the eigenvectors of the
operator A is denoted by EV(A) and is called the family of the eigenvectors of A.
The set of all the eigenvalues of the operator A is denoted by ES(A); moreover the
eigenspace relative to an eigenvalue a ∈ K is denoted by |a〉A.

Theorem 2.5 (spectral theorem). Let A ∈ S uEnd(S ′n), f ∈ OM (Rm,K) and
v ∈ Sind(Rm,S ′n) such that, for each p ∈ Rm, one has A(vp) = f(p)vp, i.e. A(v) = fv.

Then, for each u ∈ S uspan(v), one has A(u) =
∫

Rm

f [u | v]v.

Proof. For each u ∈ S uspan(v), one has

A(u) = A(
∫

Rm

[u | v]v) =
∫

Rm

[u | v]A(v) =
∫

Rm

[u | v](fv) =
∫

Rm

(f [u | v])v.

In fact, the third equality holds because, A(v)p = A(vp) = f(p)vp = (fv)(p), and the
forth because
∫

Rm

[u|v](fv)(φ) = [u|v]((fv)∧(φ)) = [u|v](fv̂(φ)) = (f [u|v])(v̂(φ)) =
∫

Rm

(f [u|v])v,

this concludes the proof.

Let X ⊆ S ′n be a subspace of S ′n, A ∈ Hom(X,S ′m) and v ∈ S(Rm,S ′n) be a family
of distributions. The superposition of v with respect to A, is the operator

∫

Rm

Av : X → S ′n : u 7→
∫

Rm

A(u)v.

In the condition of the above theorem one has: A|X =
∫

Rn

f [· | v]v.

Applications (the building of the basic observables of quantum mechan-
ics). A particle moving in the real line can be in a state in which its position is x ∈ R.
It’s natural to assume that this state can be represented by the distribution δx, so
if we denote by Q the observable “position” we have Qδx = xδx, i.e., Qδ = IRδ,
applying the above theorem one has Q(u) =

∫

Rn

IR[u | δ]δ =
∫

Rn

(IRu)δ = IRu. This
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justifies the definition of the position operator, which is now possible to define, more
naturally, the only observable that in the state δx assume the value x. Analogously,
following De Broglie, we assume that the state of a particle moving in one dimension
with momentum p ∈ R be represented by the regular distribution [e

i(p|·)
~ ], so, if we

denote by P and T the observables “momentum” and “Hamiltonian of a classic free
particle in R”, respectively, we have P [e

i(p|·)
~ ] = p[e

i(p|·)
~ ] and

T [e
i(p|·)
~ ] =

p2

2m
[e

i(p|·)
~ ],

i.e., putting f = ([e
i(p|·)
~ ])p∈R, Pf = IRf and Tf = p2

2mf , applying the above theorem,
one has

P (u) =
∫

R
IR[u | f ]f = (IR F

(1,−1/~)
− (u)) ◦ S = F

(1,−1/~)
(IR F

(1,−1/~)
− (u)) =

=
(

i

−1/~

)1

( F
(1,−1/~)

( F
(1,−1/~)

− (u)))′ = −i~u′,

T (u) =
∫

R

I2R
2m

[u | f ]f = (
I2R
2m

F−(u)) ◦ S =
1

2m
F

(1,−1/~)
(I2RF−(u)) =

=
1

2m

(
i

−1/~

)2

(F(F−(u)))′′ = − ~
2

2m
u′′.

§3. The functional “price” as an S−linear functional

We present here an original model for the one consumer model with a continuous
set of choices. In our model, if we have a market with infinitely many commodities,
more precisely, with an ordered set g = (gi)i∈R of commodities, we have a “distribution
of prices” p, this is a function p ∈ C∞ (R,R). In our model, a bundle of commodities
in this market is represented by a distribution β ∈ E ′ (R,R) with compact support.
The price of β is

P (β) =
∫

R
pβdµ,

where µ is the Lebesgue-measure on R and
∫

R
pβdµ is the usual integral of the com-

pact support distribution pβ. We recall that the product of a smooth function by a
distribution with compact support is yet a distribution with compact support.

At this point we consider the functional

P : E ′ (R,R) → R : β 7→
∫

R
pβdµ,

and for β a family of distributions with compact support that represents a family of
bundles, we put

P (β) = (P (βi))i∈R =
(∫

R
pβidµ

)

i∈R
.
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In other words, we say that the image of a family of bundles is the family of the
image of the bundles, so P (β) is a family of real numbers indexed by the set of real
numbers, and hence it can be viewed as a real function defined on the real line.

Further, for a given family of real numbers f = (fi)i∈R, viewed as a smooth
function, we can consider, for every compact support distribution a, the following
number ∫

R
af :=

∫

R
fadµ,

where in the right hand we have the usual integral of the distribution fa, and f is
considered as a smooth function; the symbol on the left is, according to us, “the
superposition of the family f under the system of coefficients a”. We recall that the
integral of a compact support distribution is simply its value on the constant function
1R (1 everywhere), so ∫

R
fadµ = (fa) (1R),

and recalling the definition of the product of a distribution by a smooth function, we
have ∫

R
fadµ = a(f).

We shall prove that the functional P is subject to the following:

Theorem. Let a be a distribution with compact support a, and β a family of
bundles verifying the property that for every smooth function g, the map β(g) : x ∈
R→ βx(g) ∈ R is smooth too. Then

P

(∫

R
aβ

)
=

∫

R
aP (β) .

In this case P is called S-ultralinear.

Proof. First we have to prove that the expression P

(∫

R
aβ

)
=

∫

R
aP (β) is

correctly stated. Since β(g) is a smooth function for every smooth function g, one
has that it is possible to consider the linear functional

s : E(R,R) → R : g 7→ a(β(g));

moreover by the completeness theorem of E ′(R,R), s is a distribution with compact
support. We have to prove that P (β) is a family which is superposable under every
compact support distribution. But this is obvious because P (β) as a function is a
smooth one; more precisely, it is β(p):

P (β) = (P (βi))i∈R =
(∫

R
pβidµ

)

i∈R
= (βi(p))i∈R = β(p),

which is smooth, since p is smooth.
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If a ∈ E ′(R,R) we have
(∫

R
aβ

)
= a ◦ β̂, so we infer

P

(∫

R
aβ

)
=

∫

R
p

(∫

R
aβ

)
dµ =

∫

R
p

(
a ◦ β̂

)
dµ =

(
p

(
a ◦ β̂

))
(1R) =

=
(
a ◦ β̂

)
(p1R) =

(
a ◦ β̂

)
(p) = a

(
β̂(p)

)
=

∫

R
β(p)adµ =

=
∫

R
(βi(p))i∈R adµ =

∫

R
a (βi(p))i∈R =

∫

R
a

(∫

R
pβidµ

)

i∈R
=

=
∫

R
a

(∫

R
pβdµ

)
=

∫

R
aP (β) .

Recall that, by
∫

R
pβdµ, we indicate the family

(∫

R
pβidµ

)

i∈R
, so a smooth

distribution of prices in a market with infinite commodities generates an S-linear
functional.
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