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Abstract

We study prolongations of statistical structures on manifolds to their tangent
bundles. We show that tangent bundles over flat statistical manifolds admit
natural almost complex statistical structure with Norden metric.
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§0. Introduction
A statistical structure on a manifold M is a pair (h,∇) such that h is a semi-

Riemannian metric and ∇ is a torsion free linear connection with property ∇h is
totally symmetric. A manifold M with a statistical structure is called a statistical
manifold. A semi-Riemannian manifold (M, h) together with Levi-Civita connection
∇0 of h is a typical example of statistical manifold. In other words, statistical mani-
folds can be regarded as generalisations of semi-Riemannian manifolds.

Statistical manifolds provide geometric model of probability distributions. Geom-
etry of statistical manifolds has been applied to various fields of information science,
e.g., information theory, neural networks, statistical mechanics etc.

We refer to the readers Amari and Nagaoka’s textbook [2] for general theory of
statistical manifolds. See also [6] and [20].

The study of statistical structures has another motivation. On equiaffinely im-
mersed hypersurface M in unimodular affine space An+1, a statistical structure (h,∇)
is naturally induced. More precisely the metric h is the affine fundamental form and
∇ is the connection induced from the natural flat connection of An+1 by the equiaffine
immersion (See Section 2.1 in [24]).

For realisation problem of statistical manifolds in unimodular affine space (as
equiaffinely immersed hypersurfaces), we refer to [16], [19].

In this paper we shall study prolongation of statistical structures on manifolds to
their tangent bundles.

It turned out that in the study of complex-affine differential geometry, complex
statistical manifolds with Norden metric would play an important role [22].

We shall show that tangent bundles over flat statistical manifolds admit natural
almost complex statistical structure with Norden metric.
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§1. Statistical manifolds
We start with recalling the notion of statistical structure reformulated by Kurose.

Definition 1.1. ([17]) Let M be a manifold, h a semi-Riemannian metric and ∇
a torsion free linear connection. Then ∇ is said to be compatible to h if the covariant
derivative C := ∇h is symmetric.

A pair (h,∇) of a semi-Riemannian metric with a compatible linear connection is
called a statistical structure on M .

A manifold M together with a statistical structure is called a statistical manifold.
In particular statistical manifolds with flat connection are traditionally called Hes-

sian manifolds [30].
On a statistical manifold (M,h,∇), the symmetric tensor field C = ∇h is called

the cubic form or skewness field of M .
Next, on a statistical manifold (M, h,∇), the conjugate connection ∇† of ∇ with

respect to h is introduced by the following formula:

X · h(Y, Z) = h(∇XY, Z) + (Y,∇†XZ), X, Y, Z ∈ X (M).(1.1)

Obviously ∇ = ∇† if and only if ∇ coincides with the Levi-Civita connection ∇0. Let
us denote the musical (metrical) isomorphism from TM to T ∗M by [:

[ : TM → T ∗M ; X[(Y ) = h(X,Y ), X, Y ∈ X (M).

Denote by ∇∗ the dual connection of T ∗M induced by ∇, i.e.,

(∇∗Xω)Y := X(ω(Y ))− ω(∇XY ), ω ∈ X ∗(M), X, Y ∈ X (M).

Then we get [ ◦∇† = ∇∗ ◦ [. Namely, if we identify TM with T ∗M via [, then ∇† is
identified with ∇∗. On this reason, we often denote the conjugate connection by ∇∗
and call it dual connection.

Define the tensor field K of type (1, 2) by

h(K(X)Y,Z) = C(X,Y, Z) = (∇Xh)(Y, Z)

for all X,Y, Z. Since C is symmetric, K(X) is symmetric with respect to h. We call
this tensor field K the skewness operator of (M,h,∇). The difference of ∇ and ∇0 is
given by

∇−∇0 = −1
2
K.

This formula implies that ∇0 is the “mean” of ∇ and ∇∗:

∇0 =
1
2
(∇+∇∗).

More generally for any real number α,

∇α
XY = ∇0

XY − α
2

K(X)Y(1.2)

defines a torsion free linear connection ∇α. The linear connection ∇α is called the
α-connection. Note that ∇1 = ∇ and ∇−1 = ∇∗.
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Proposition 1.2 ([20]) The covariant derivative of h relative to ∇α is

(∇α
Xh)(Y,Z) = αC(X, Y, Z).

Thus (M, h,∇α) is statistical for all α ∈ R.

For every statistical manifold (M, h,∇), there exists a naturally associated sym-
metric trilinear form C.

Conversely let (M, h, C) be a semi-Riemannian manifold with symmetric trilinear
form C. Then define the tensor field A by

h(K(X)Y, Z) = C(X, Y, Z).

and a linear connection ∇ by ∇ = ∇0 −K/2. Then ∇ is of torsion free and satisfies
∇h = C. Hence the triplet (M, h,∇) becomes a statistical manifold.

Thus to equip a statistical structure (h,∇) is equivalent to equip a pair of structue
(h, C) consisting of a semi-Riemannian metric h and a trilinear form C. Lauritzen [20]
introduced the notion of statistical manifold as a semi-Riemannian manifold (M, h)
together with a trilinear form C.

Next we consider almost complex structures on statistical manifolds.

Definition 1.3. Let (M,J) be an almost complex manifold with almost complex
structure J , and (h,∇) a statistical structure on M . Then the structure (J, h,∇)
is said to be an almost complex statistical structure with Hermitian metric if h is
Hermitian, i.e.,

h(JX, JY ) = h(X, Y ).

Similarly almost complex statistical manifolds with Norden metrics are defined in
the following way:

Definition 1.4. Let (M, J) be an almost complex manifold with almost complex
structure J , and (h,∇) a statistical structure on M . Then the structure (J, h,∇) is
said to be an almost complex statistical structure with Norden metric if h is Norden,
i.e.,

h(JX, JY ) = −h(X, Y ).

It is obvious that every Norden metric is a neutral semi-Riemannian metric. In
addition, an almost statistical manifold (M, h,∇, J) with Hermitian or Norden metric
is said to be a complex statistical manifold with Hermition or Norden metric if∇J = 0.
Note that the requirement ∇J = 0 implies the integrability of J .

§2. Tangent bundles
Let M be a smooth n-manifold and x ∈ M . The tangent space TxM itself is a

real analytic n-manifold. We start with how to describe the tangent space Tu(TxM)
of TxM at u ∈ TxM . Recall that, by definition, the tangent space Tu(TxM) is the set
of all derivations acting on the space of smooth functions C∞(TxM).

Let u, w ∈ TxM then the directional derivative wu

wu(f) :=
d
dt

∣

∣

∣

∣

t=0
f(u + tw)(2.1)
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is a tangent vector of TxM at u. The correspondence w 7→ wu defines a canonical
linear isomorphism TxM → Tu(TxM).

This canonical isomorphism can be viewed as a lifting operation of tangent vectors
from M to its tangent bundle TM . To explain this observation, we recall the vertical
lift operation to TM for tangent vectors.

We denote by π the natural projection of TM onto M . Taking a local coordi-
nate system (U ;x1, · · · , xn), we denote the induced coordinate system on π−1(U) by
(x1, · · · , xn;u1, · · · , un). For a point u = (x;u) of TM , we denote the kernel of π∗u
by Vu and call it the vertical subspace of Tu(TM) at u. The correspondence u 7→ Vu

defines a distribution on TM . This distribution is called the vertical distribution of
TM . Tangent vectors belong to vertical subspaces are called vertical vectors. By
definition, the vertical subspace Vu is spanned by {∂/∂u1, · · · , ∂/∂un}. It is easy to
see that the vertical distribution V is integrable and hence becomes a foliation and a
vector bundle over TM . The sections of vertical subbundle is called vertical vector
fields on TM .

The two linear spaces TxM and Vu have the same dimension. Moreover, there
exists a canonical linear isomorphism V : TxM → Vu, called the vertical lift.

In fact, for any tangent vector w on M with local expression:

w = wi ∂
∂xi

∣

∣

∣

∣

x
,

the vertical lift wv to TM is defined by

wv = wi ∂
∂ui

∣

∣

∣

∣

u
.(2.2)

This definition is independent of the choice of local coordinate system.
We can easily see that

wu = (wv)u, u, w ∈ TxM.(2.3)

Namely the canonical isomorphism TxM → Tu(TxM) is a vertical lift operation
TxM → Vu ⊂ Tu(TM). Thus we conclude that

Vu = Tu(TxM), x ∈ M, u ∈ TxM.(2.4)

This fundamental fact implies the following isomorphism of vector bundles:

π∗TN ∼= V.

Here π∗TM is the pulled back bundle of TM by π : TM → M .
It is easy to check that

U = ui ∂
∂ui(2.5)

is a vertical vector field globally defined on TM . This definition of U is independent
of the choice of local coordinate system. The vertical vector field U is called the
canonical vertical vector field of TM . Since the directional derivative ww is expressed
as

Uw = ww = (wv)w, w ∈ TM,

we may call U the vertical position vector field of TM .
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§3. Vertical lifts

In this section we shall collect formulae of vertical lift operations developed by
Kobayashi and Yano [36].

For a function f on M , the function f ◦ π on TM is denoted by fv and call it the
vertical lift of f to TM .

Next the vertical lift operation for tangent vectors is extended naturally to vector
fields. For any vector field X on M with local expression:

X = Xi ∂
∂xi ,(3.1)

the vertical lift Xv to TM is defined by

Xv = (Xi)v
∂

∂ui .(3.2)

This definition is independent of the choice of local coordinate system. Note that for
any X ∈ X (M) its vertical lift Xv is complete.

Direct calculation shows that for any vector field X, Y ∈ X (M),

[Xv, Y v] = 0.(3.3)

To define the vertical lift operation of 1-forms, we shall prepare the following
notational convention.

Let ω be a 1-form on M . Then ω is naturally regarded as a smooth function on
TM . More precisely we shall denote the (induced) function on TM by ιω. Note that
the vertical lift Xv of a vector field X is characterised as

Xv(ιω) = {ω(X)}v.

Let f be a smooth function on M . Then the vertical lift of df is defined by

(df)v = d(fv).

In particular for local coordinate function xi, (dxi)v = dxi.
The vertical lift of an arbitrary 1-form ω with local expression:

ω = ωidxi,

is defined by the formula:
ωv = (ωi)v(dxi)v.(3.4)

The definition of ωv is independent of the choice of local coordinate system.
We can extend the vertical lift operation on the full tensor algebra T (M) by the

rule:
(P ⊗Q)v = P v ⊗Qv,(3.5)

for any tensor fields P and Q on M .

§4. Complete lifts
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In this section we shall recall the complete lift operation to TM introduced by
[36].

For a function f on M , the complete lift f c of f to TM is a function

f c = ιdf = ui ∂f
∂xi

.

The complete lift of a vector field X to TM is a vector field Xc on TM characterised
by the formula Xcf c = (Xf)c for all function f . Note that Xcfv = (Xf)v.

Let X be a vector field on M with local expression:

X = Xi ∂
∂xi .

Then the complete lift Xc has the following local expression:

Xc = (Xi)v
∂

∂xi + uj ∂Xi

∂xj

∂
∂ui .(4.1)

This formula implies the following

Proposition 4.1 Let v = (x; v) be a point of TM which is not the zero section. Then
the set {Xc

v | X ∈ X (M)} is the whole tangent space of TM at v.

The complete lift of a 1-form ω is a 1-form ωc on TM defined by ωc(Xc) = (ω(X))c.
By definition, we have d(ωc) = (dω)c for any 1-form ω on M .

The complete lift operation is extended to the full tensor algebra T (M) by the
rule:

(P ⊗Q)c = P c ⊗Qv + P v ⊗Qc,(4.2)

for any tensor fields P and Q on M .
Here we shall collect some formulae for our use.

Proposition 4.2 Let P be a tensor field of type (r, s), r = 0, 1 on M . Then

P c(Xc
1 , · · · , Xc

s) = (P (X1, · · · , Xs))c, P c(Xv
1 , · · · , Xv

s ) = 0.(4.3)

Corollary 4.3 Let h be tensor field of type (0,2) on M . Then

hc(Xc, Y c) = h(X, Y )c, hc(Xc, Y v) = h(X,Y )v, hc(Xv, Y v) = 0.(4.4)

In particular if h is a semi-Riemannian metric on M . Then hc is a neutral metric
on TM , i.e., a semi-Riemannian metric on TM of signature (n, n). The metric hc is
called the complete lift metric on TM .

Remark 4.4. (Vertical lifts of metrics) Let h be a tensor field of type (0, 2). Then the
vertical lift hv to TM is given by

hv(Xc, Y c) = h(X, Y )v, hv(Xc, Y v) = 0, hv(Xv, Y v) = 0.

These formulae imply that hv is degenerate even if h is nondegenerate.
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Corollary 4.5 Let P be a tensor field of type (1,1). Then

P cXc = (PX)c, P cXv = (PX)v, P vXc = (PX)v, P vXv = 0.

Proposition 4.6 The Lie derivatives of P are given by

£XcP c = (£XT )c, £XcP v = (£XT )v, £XvP c = (£XT )v, £XvP v = 0.

In particular for any vector fields X and Y on M ,

[Xc, Y c] = [X, Y ]c, [Xc, Y v] = [X, Y ]v.(4.5)

Finally we shall recall the complete lift operation of linear connection. Let ∇ be
a linear connection on M . Then the formula

∇c
XcY c = (∇XY )c(4.6)

defines a linear connection ∇c on TM . This connection ∇c is called the complete lift
of ∇ to TM .

Proposition 4.7 For any tensor field P on M . Then the covariant derivative of P
by X ∈ X (M) is described by

∇c
XcP c = (∇XP )c,∇c

XcP v = (∇XP )v,∇c
XvP c = (∇XP )v,∇c

XvP v = 0.

In particular for X, Y ∈ X (M),

∇c
XcY v = ∇c

XvY c = (∇XY )v, ∇c
XvY v = 0.

Corollary 4.8 Let (M,∇) be a manifold with a linear connection ∇. And let T and
R be the torsion and curvature tensor field of ∇ respectively. Then the torsion and
curvature of ∇c are T c and Rc respectively.

Corollary 4.9 Let (M, g,∇0) be a semi-Riemanian manifold with Levi-Civita con-
nection ∇0. Then the Levi-Civita connection of gc is (∇0)c.

Remark 4.10. On a semi-Riemannian manifold (M, h), we may identify TM with
cotangent bundle T ∗M via h. Then the complete lift metric hc coincides with so-
called Riemann extension of the Levi-Civita connection ∇0 of h to T ∗M introduced
by Patterson and Walker [26]. Note that although the complete lift metric on TM is
derived from metric on the base manifold, the Riemann extension on T ∗M is derived
from a linear connection on M . (See Appendix A1.)

Now let (M, h,∇) be a statistical manifold. Then we can construct complete
lifts of h and ∇. Murathan and Güney [23] studied the complete lift of statistical
structure. They showed that a complete lift operation induces a statistical structure
on the tangent bundle TM . They lifted cubic form C and α-connections to TM .
Here we shall give a simple proof of their result.

Proposition 4.11 Let (M, h,∇) be a statistical manifold. Then (TM, hc,∇c) is a
statistical manifold with neutral metric. The cubic form of (TM, hc,∇c) is the com-
plete lift Cc of C. The conjugate connection of ∇c is (∇c)∗ = (∇∗)c.
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Proof. Since ∇ is torsion free, ∇c is also torsion free by Corollary 4.8. Next by
definition of the complete lift,

(∇c
Xchc)(Y c, Zc) = {(∇Xh)(Y, Z)}c = {(∇Y h)(X, Z)}c = (∇c

Y chc)(Xc, Zc).

Hence ∇chc is symmetric. The cubic form of (TM, hc,∇c) is ∇chc = (∇h)c = Cc.
Next

hc(Y c,∇c∗
XcZc) = Xchc(Y c, Zc)− hc(∇c

XcY c, Zc)

= Xc{h(Y,Z)}c − {h(∇XY,Z)}c

= {Xh(Y,Z)}c − {h(∇XY, Z)}c

= {Xh(Y, Z)− h(∇XY, Z)}c = {h(Y,∇∗XZ)}c

= hc(Y c, (∇∗)c
XcZc).

Hence∇c∗ = ∇∗c. Since the cubic form of (TM, hc,∇c) is Cc, this statistical structure
(hc,∇c) coincides with that of [23]. 2

Corollary 4.12 The α-connection ∇c α of (TM, hc,∇c) is given by ∇c α = (∇α)c

and satisfies the following formula:

∇cα
XcY c = ∇hc

XcY c − α
2

Kc(Xc)Y c.

Here Kc is the complete lift of A and ∇hc
is the Levi-Civita connection of the complete

lift metric hc.

Finally we recall how the complete lift operation is used for study of Jacobi fields.

Theorem 4.13 ([9], [33], [36]) Let (M,∇) be a manifold with a linear connection
and ψ : I ⊂ R → (TM,∇c) a smooth curve in TM . Then ψ is a geodesic in TM
with respect to ∇c if and only if γ := π ◦ ψ is a geodesic in (M,∇) and ψ is a Jacobi
field along γ.

Note that this theorem is generalised for harmonic maps. See [10] and [8], p. 391.

Theorem 4.14 ([10]) Let (M, gM ) and (N, gN ) be (semi) Riemannian manifolds and
ψ : M → TN a smooth map. Then the tension field τ(ψ) of ψ with respect to the
complete lift metric gc

N is given by

τ(ψ) = {τ(ϕ)}h + {Jϕ(ψ)}v.

Here ϕ := π ◦ ψ and Jϕ denotes the Jacobi operator of ϕ. Thus ψ : (M, gM ) →
(TN, gc

N ) is harmonic if and only if ϕ is harmonic and ψ is the Jacobi field of ϕ.

Proposition 4.15 ([32]) Let (M, g,∇0) be a Riemannian manifold and γ be a geodesic
in M . Denote by φ the geodesic flow of (M, g). For a vector field X along γ, X is a
Jacobi field along γ if and only if Xc is φ-invariant.
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§5. Horizontal lifts
The vertical lift operation and the complete lift operation depend on the smooth

structure of the base manifold M . In this section, we shall recall the horizontal lift
operation which depends on linear connection on M .

Let M be a smooth n-manifold. A linear connection ∇ on M corresponds to a
splitting of the tangent bundle T (TM) of TM into the vertical distribution V and its
complementary distribution H:

T (TM) = H⊕ V.(5.1)

The complementary distribution H = H∇ corresponds to ∇ is called the horizontal
distribution of T (TM) with respect to ∇.

Let Xx be a tangent vector of M at x. Then the horizontal lift of Xx to H(x;u)

is the unique tangent vector Xh
u such that π∗Xh

u = Xx. The horizontal lift operation
h : TxM → Hu can be extended for linear map h : X (M) → Γ(H).

Let X be a vector field on M with local expression

X = Xi ∂
∂xi .

Then the horizontal lift Xh of X to TM has local expression:

Xh = (Xi)v
∂

∂xi − (Xj)vukΓi
jk

∂
∂ui .(5.2)

Here {Γi
jk} are connection coefficients of ∇.

To describe commutation relations, we prepare the following notational conven-
tions introduced by Sekizawa [29]:

Let P be a tensor field of type (1, s) on M and X1, · · · , Xs−1, u = ui∂/∂xi ∈ TxM .
Then h{P (X1, · · · , u, · · · , Xs−1)} is a horizontal vector at (x; u) defined by

h{P (X1, · · · , u, · · · , Xs−1)} = ua(P (X1, · · · ,
∂

∂xa , · · · , Xs−1))h.(5.3)

Similarly we shall define v{P (X1, · · · , u, · · · , Xs−1)}.

Remark 5.1. Let P be a tensor field of type (1, s) on M . Yano and Ishihara [35]
defined a tensor field γP of type (1, s − 1). In our notation, γP is given by the
following formula:

(γP )(X1, · · · , Xs−1) = v{P (u,X1, · · · , Xs−1)}.

For a vector field X ∈ X (M), its horizontal lift and complete lift are related by

Xc
u = Xh

u + v{(∇X)u}.(5.4)

Thus Xc = Xh if and only if ∇X = 0.

Proposition 5.2 Let P be a tensor field of type (r, s) on M . Then

P c(Xv
1 , · · · , Xv

j−1, X
h
j , Xv

j+1, ·, Xv
s ) = (P (X1, · · · , Xs))v.(5.5)
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Proposition 5.3 ([35], p. 106) Let (M,∇) be a manifold with a linear connection.
Then the covariant derivatives of horizontal and vertical vector field with respect to
the complete lift connection ∇c are given by

(∇c
XhY h)(x;u) = (∇XY )h(x;u) + v{R(u,X)Y },(5.6)

(∇c
XhY v)(x;u) = (∇XY )v(x;u),(5.7)

(∇c
XvY h)(x;u) = (∇c

XvY v)(x;u) = 0.(5.8)

(∇c
XcY h)(x;u) = (∇XY )h(x;u) + v{R(u,X)Y }.(5.9)

Proposition 5.4 ([7])

[Xh, Y h](x;u) = [X,Y ]h(x;u) − v{R(X,Y )u},

[Xh, Y v](x;u) = (∇XY )v(x;u) − T (X,Y )v(x;u), X, Y ∈ X (M).

Corollary 5.5 ([7]) The horizontal distribution H is integrable if and only if (M,∇)
is flat, i.e., R = 0.

Since a linear connection ∇ induces a splitting of T (TM), ∇ induces an almost
complex structure J = J∇ on TM :

JXh = Xv, JXv = −Xh

for all X ∈ X (M). This almost complex structure J is called the canonical almost
complex structure of TM induced by ∇. By computing the Nijenhuis torsion of J ,
Dombrowski obtained the following.

Proposition 5.6 ([7]) Let (M,∇) be a manifold with a linear connection. Then the
canonical almost complex structure on TM induced by ∇ is integrable if and only if
the connection ∇ is flat and of torsion free.

Remark 5.7. (The geodesic flows)
Let γ(t) = (xi(t)) be a curve parametrised by the affine parameter in (M,∇).

Then γ is a geodesic with respect to ∇ if and only if ∇γ′γ′ = 0. In a local coordinate
system, this equation is written in the following form:

d2xk

dt2
+ Γk

ij
dxi

dt
dxj

dt
= 0.(5.10)

This system of second order ordinary differential equations on M is equivalent to the
following system of first order ordinary differential equation on TM :

dxk

dt
= uk,

duk

dt
= −Γk

iju
iuj .(5.11)

This equation can be understood as an equation of a flow on TM . In fact,

ξ = uk ∂
∂xk − Γk

iju
iuj ∂

∂uk(5.12)
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is globally defined on TM . In particular ξ is horizontal. The vector field ξ is called
the geodesic flow vector field or spray of TM . The spray ξ is related to U by

ξ = −J U.(5.13)

Proposition 5.8 A manifold (M,∇) is geodesically complete if and only if ξ is a
complete vector field on TM .

Proposition 5.9 Let (M,h,∇) be a statistical manifold. Let us denote by ξ and ξ∗

the geodesic sprays of ∇ and ∇∗ respectively. Then ξ0 = (ξ + ξ∗)/2 is the spray of
∇0. More generally the spray of ∇α is given by

ξα = ξ0 +
α
2

(ξ − ξ∗) =
1
2
{(1 + α)ξ + (1− α)ξ∗}.

Take a semi-Riemannian metric h on (M,∇). Here we do not assume that ∇ is
metrical (i.e., ∇h = 0). By using the splitting (5.1), we can define a semi-Riemannian
metric hS on TM :

hS
(x;u)(X

h, Y h) = hx(X,Y ), hS
(x;u)(X

h, Y h) = 0, hS
(x;u)(X

v, Y v) = hx(X, Y ).

This semi-Riemannian metric hS is called the diagonal lift of h or Sasaki lift of h [27].
The Sasaki lift hS has the following coordinate free definition:

hS
(x;u)(X̃, Ỹ ) = hx(π∗X̃, π∗Ỹ ) + hx(KX̃,KỸ )

Here the map K : T (TM) → TM is defined by

KuXh
u = 0, KuXv

u = Xx

and called the connection map of TM derived from ∇ [7]. Note that

dπ ◦ J = −K, K ◦ J = dπ.

For a manifold (M, h,∇) with a semi-Riemannian metric h and a linear connection
∇, the canonical almost complex structure J with respect to ∇ and the Sasaki lift hS

satisfy the following

hS(JX̃, JỸ ) = hS(X̃, Ỹ ), X̃, Ỹ ∈ X (TM).

Namely hS is a Hermitian metric of (TM, J). In particular, for semi-Riemannian
manifold (M, g,∇0) with Levi-Civita connection, each horizontal subspace Hu is the
orthogonal complement of Vu with respect to gS. Hence the natural projection π :
(TM, gS) → (M, g) is a Riemannian submersion with totally geodesic fibres. Moreover
we have the following (cf. [31], [4])

Proposition 5.10 Let (M, g,∇0) be a semi-Riemannian manifold with the Levi-
Civita connection. Then the tangent bundle (TM, gS, J) together with the Sasaki
lift metric and the canonical almost complex structure J with respect to ∇0 is an
(indefinite) almost Kähler manifold.
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Remark 5.11. Let us denote by ΩS the fundamental 2-form of (TM, J, gS) over a
semi-Riemannian manifold (M, g,∇0).

ΩS(X̃, Ỹ ) = gS(JX̃, Ỹ ).

Under the musical isomorphism [ : TM → T ∗M with respect to g, the fundamental
2-form ΩS of (TM, J, gS) corresponds to the canonical 2-form Ω of T ∗M . Note that
on a general statistical manifold (M,h,∇), ΩS 6= Ω. See [11].

Corollary 5.12 The (indefinite) almost Kähler manifold (TM, gS, J) is (indefinite)
Kähler if and only if (M, g) is flat.

Problem 5.13. Let (M, h,∇) be a semi-Riemannian manifold with a torsion free
linear connection. We equip TM the Sasaki lift metric hS and the canonical almost
complex structure J with respect to ∇.
(1) When is the fundamental 2-form

ΩS(X̃, Ỹ ) := hS(JX̃, Ỹ )

closed ?
(2) Let Ω be the canonical symplectic 2-form of T ∗M . Then the pulled-back 2-form
Ωh := [∗Ω is compatible to the canonical almost complex structure J = J∇ on TM
with respect to ∇, i.e.,

Ωh(JX̃, X̃) > 0

for all non zero vector field X̃ on TM and

Ωh(JX̃, JỸ ) = Ωh(X̃, Ỹ )

for all vector fields X̃, Ỹ on TM if and only if ∇ and h are compatible. Characterise
symplectic manifolds with compatible almost complex structure which are locally
obtained in this way. This problem was proposed by Kurose in [11].

Here we describe relations between the complete lift metric hc and the canonical
almost complex structure J = J∇. Direct computations show the following formula:

hc
(x;u)(JX̃, JỸ ) = −hc

(x;u)(X̃, Ỹ ) + 2{(∇uh)x(π∗X̃, π∗Ỹ ) + (∇uh)x(KX̃,KỸ )}

for all vector fields X̃, Ỹ on TM .
Next, direct computations using Proposition 5.3 yield the following formula:

(∇c
X̃J)Ỹ = h{R(u, π∗X̃)π∗Ỹ } − v{R(u, π∗X̃)KỸ }.

Thus we obtain

Proposition 5.14 Let (M, h,∇) be a statistical manifold and J the canonical almost
complex structure on TM with respect to ∇. Then
(1) (TM, J, hc) is an almost complex manifold with Norden metric if and only if
C = 0.
(2) J is parallel with respect to ∇c if and only if (M,∇) is flat.
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Now we shall recall the horizontal lift operation of tensor fields with respect to ∇.
For any function f on M its horizontal lift fh to TM is fh = 0. Next for a 1-form
ω = ωidxi, its horizontal lift ωh is defined by

ωh = Γk
iju

jωkdxi + ωkduk.

The horizontal lift ωh is related to the complete lift by

ωh = ωc − v{∇uω}.

The horizontal lift operation is extended to T (M) by the rule:

(P ⊗Q)h = P v ⊗Qh + P h ⊗Qv.

In particular, for any tensor field P ∈ T r
s (M) with r = 0, 1 (See [35], Proposition 3.5,

p. 97):
P h(Xh

1 , · · · , Xh
s ) = (P (X1, ·, Xs))h,

P h(Xh
1 , ·, Xh

j−1, X
v
j , Xh

j+1, ·, Xh
s ) = (P (X1, ·, Xs))v,(5.14)

P h(Xv
1 , ·, Xv

s ) = 0.

Here we can compare two lifting operations, the complete lift and the horizontal
lift:

Proposition 5.15 Let (M,∇) be a manifold with a linear connection and P be a
tensor field on M . Then the horizontal lift P h coincides with P c if and only if ∇P = 0.

Now let (M,∇) be a manifold with linear connection and h a semi-Riemannian metric
on M .

Then the horizontal lift metric hh with respect to ∇ is described by the following
formulae:

hh
(x;u)(X

h, Y h) = hh
(x;u)(X

v, Y v) = 0, hh
(x;u)(X

h, Y v) = hx(X, Y ).(5.15)

Note that hh is characterized by the following equation:

hh
(x;u)(X̃, Ỹ ) = hx(π∗X̃,KỸ ) + hx(KX̃, π∗Ỹ ).

The horizontal lift hh coincides with the complete lift hc if and only if ∇h = 0. In
particular for semi-Riemannian manifold (M, g,∇0) with Levi-Civita connection, its
horizontal lift metric gh and complete lift metric gc coincide.

Both of Sasaki lift metric and horizontal lift metric are natural metrics on TM in
the sense of Kowalski and Sekizawa [15].

The horizontal lift ∇h of the connection ∇ is defined by the formulae:

∇h
XvY v = 0, ∇h

XvY h = 0,

∇h
XhY v = (∇XY )v, ∇h

XhY h = (∇XY )h.(5.16)

Even if ∇ is of torsion free, its horizontal lift ∇h has non trivial torsion.
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Proposition 5.16 ([35], pp. 109–110) Let ∇ be a torsion free linear connection on
M . Then the horizontal lift ∇h is of torsion free if and only if ∇ is flat. In this case
∇h is flat and ∇h = ∇c.

Using (5.16) and (5.3), we get the following result.

Proposition 5.17 Let (M,h,∇) be a semi-Riemannian manifold with
a linear connection. Then the natural projection π : (TM,∇h) → (M,∇) is a totally
geodesic map, i.e., the second fundamental form ∇dπ of π defined by

(∇dπ)(X̃; Ỹ ) = ∇π
Ỹ dπ(X̃)− dπ(∇h

Ỹ X̃), X̃, Ỹ ∈ X (TM)

vanishes. Similarly, π is also a totally geodesic map of (TM,∇c) onto (M,∇).

This is a generalisation of the following result due to Ferreira.

Corollary 5.18 ([10]) Let (M, g,∇0) be a semi-Riemannian manifold with
Levi-Civita connection. Then the natural projection π : (TM, gc) → (M, g) is a totally
geodesic map.

Note that in case π : (TM,∇h) → (M,∇), the second fundamental form ∇dπ is
symmetric if and only if ∇ is flat.

Proposition 5.19 Let P be a tensor field on (M,∇). Then

∇h
XcP v = (∇XP )v, ∇h

XcP h = (∇XP )h,

∇h
XvP v = 0, ∇h

XvP h = 0

for all X ∈ X (M).

These formulae imply the following result.

Proposition 5.20 Let (M, h,∇) be a statistical manifold. Then (TM, hS,∇h) or
(TM, hh,∇h) is a statistical manifold if and only if ∇h = 0. In such cases, resulting
structures on TM are the Sasaki lift metric or the horizontal lift metric with their
Levi-Civita connection.

§6. Statistical structures compatible to the Sasaki lift metric
Let (M, h,∇) be a statistical manifold with skewness operator K. First we consider

the horizontal lift of K. By definition, Kh is give by

Kh(Xh)Y h = (K(X)Y )h,

Kh(Xh)Y v = Kh(Xv)Y h = (K(X)Y )v,(6.1)

Kh(Xv)Y v = 0

for all X,Y ∈ X (M). One can check that the trilinear form hS(Kh(X̃)Ỹ , Z̃) is totally
symmetric. Thus (hS,Kh) is a statistical structure on TM .
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Theorem 6.1 Let (M, h,∇) be a statistical manifold. Define a linear connection ∇̂
by

∇̃ = ∇hS
− 1

2
Ah,

where ∇hS
is the Levi-Civita connection of the Sasaki lift metric hS. Then the triplet

(TM, hS, ∇̃) is a statistical manifold.

Remark 6.2. Ianus [12] studied statistical structures on TM by using Sasaki lift
metric. However her structure is diffferent from ours. In fact, let (M, h,∇) be a
statistical manifold with skewness operator K. Ianus considered the horizontal lift
and the Sasaki lift with respect to the Levi-Civita connection ∇0 of (M, h). Let ∇hS

0

be the Levi-Civita connection of the Sasaki lift metric hS
0 and the horizontal lift Kh

0

of K with respect to ∇0. Then the connection ∇hS
0 −Kh

0 /2 is compatible to hS
0 . From

the viewpoint of information geometry, our sturcture (hS, ∇̃) is more natural than
Ianus’ structure.

Next we equip another compatible linear connection for (TM, hS). Let (M, h,∇)
be a statistical manifold. Since C is symmetric, its horizontal lift Ch is also symmetric.

Proposition 6.3 Let (M, h,∇) be a statistical manifold. Then (TM, hS, Ch) is a
statistical manifold.

Define a tensor field Â by

hS(Â(X̃)Ỹ , Z̃) = Ch(X̃, Ỹ , Z̃), X̃, Ỹ , Z̃ ∈ X (TM).

Namely Â is metrically equivalent to Ch relative to h.
Note that, in general, this Â is different from the horizontal lift of Ah. In fact, for

our structure Â,

hS(Â(Xh)Y h, Zh) := Ch(Xh, Y h, Zh) = (C(X, Y, Z))h = 0.

On the other hand, Ah satisfies

hS(Ah(Xh)Y h, Zh) = hS((A(X)Y )h, Zh) = C(X, Y, Z).

Obviously if ∇ = ∇0, then ∇̂ coincides with ∇̃.

§7. Statistical structures compatible to the horizontal lift
metric

In this section, we shall study horizontal lift metric hh on TM . The tensor field
Kh is also compatible to the horizontal lift metric hh.

Theorem 7.1 Let (M, h,∇) be a statistical manifold. Then (TM, hh,Kh) is a sta-
tistical manifold.
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Proof. Let C̃ be the corresponding trilinear form of Kh with respect to hh:

C̃(X̃, Ỹ , Z̃) := hh(Kh(X̃)Ỹ , Z̃), X̃, Ỹ , Z̃ ∈ X (TM).

For any vector fields X̃, Ỹ , Z̃ ∈ X (TM), we have

C̃(X̃, Ỹ , Z̃) = {C(π∗X̃, π∗Ỹ ,KZ̃) + C(π∗X̃,KỸ , π∗Z̃) + C(KX̃, π∗Ỹ , π∗Z̃)}v.

This formula implies that C̃ is totally symmetric. 2

As we saw before hh is a neutral metric on TM . With respect to the connection ∇,
we shall induce the canonical almost complex structure J on TM . Since, in general,
∇ is not necessarily the metric connection of h, hh 6= hc. The following is easily
verified.

Proposition 7.2 (TM, hh, J) is an almost complex manifold with a Norden metric.
Namely (hh, J) satisfies

hh(JX̃, JỸ ) = −hh(X̃, Ỹ )

for all vector fields X̃, Ỹ on TM . In particular if (M,∇) is flat, then (TM, hh, J) is
a complex manifold with a Norden metric.

Since the horizontal lift Ch of C is symmetric, we have the following result.

Proposition 7.3 The tangent bundle (TM, hh, Ch) is a statistical manifold.

To close this article, we would like to propose the following two problems arising
from complex-affine differential geometry.

Problem 7.4. (Affine Kähler manifolds) Let (N, J,∇) be a complex manifold with
a torsion free complex linear connection. If the curvature R of ∇ is J-invariant, i.e.,
R(JX, JY ) = R(X,Y ). Then (N, J,∇) is said to be an affine Kähler manifold [24].

The tangent bundle (TM, J) over a (torsion free) flat manifold (M,∇) is a complex
manifold. Can we construct any affine Kähler structure compatible to J ?

Note that there exists a torsion free linear connection ∇̂ on TM such that ∇̂J = 0.
In fact, take any torsion free linear connection ∇̃ on TM . Define a tensor field Q on
TM by

4Q(E,F ) = (∇̃JF J)E + J(∇̃F E) + 2J(∇̃EJ)F.

Then the linear connection ∇̂ = ∇̃ −Q is the desired one (See pp. 143-145 of [14]).
Such a connection satisfies

R̂(X̃, Ỹ ) ◦ J = J ◦ R̂(X̃, Ỹ ).

But in general (∇̂, J) is not affine Kähler.

Problem 7.5. (Real holomorphic structure) Let (N, J) be a complex manifold. A
torsion free linear connection ∇ is said to be real holomorphic if the curvature R of
∇ satisfies

R(JX, Y ) = JR(X,Y ).

Can we construct such a connection on (TM, J) ?
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Appendix

A.1 Cotangent bundles

In this Appendix, we collect fundamental formulae of the cotangent bundles. Let M
be a smooth n-manifold and T ∗M its cotangent bundle. Denote by π the natural
projection of T ∗M onto M . Taking a local coordinate system (U ; x1, · · · , xn) and
denote the induced local coordinate system on π−1(U) by (x1, · · · , xn; p1, · · · , pn).
For a point p = (x; p) of T ∗M , we denote the kernel of π∗ by V∗p and call it the
vertical subspace of Tp(T ∗M) at p ∈ T ∗M . The 1-form ϑ = pidxi is globally defined
on T ∗M . The 1-form ϑ is called the canonical 1-form or Liouville form of T ∗M . The
canonical 1-form has the following coordinate free definition:

ϑ(X̃) = p(π∗X̃), p ∈ T ∗M, X̃ ∈ X (T ∗M).

Next Ω := −dϑ is a symplectic form on T ∗M . Namely Ω is a nondegenerate closed
2-form on T ∗M . In fact, from the local expression of Ω,

Ω = dxi ∧ dpi,

it is clear that Ωn 6= 0 on T ∗M . This 2-form Ω is called the canonical 2-form or
canonical symplectic structure of T ∗M .

Next let ∇ be a linear connection on M . Then ∇ induces a connection ∇∗ on
T ∗M :

∇∗ : X (M)× Γ(T ∗M) → Γ(T ∗M);

(∇∗Xω)Y := X(ω(Y ))− ω(∇XY ), X, Y ∈ X (M), ω ∈ Γ(T ∗M).

The connection ∇∗ is called the dual connection of ∇.
The linear connection ∇ defines a splitting of T (T ∗M):

Tp(T ∗M) = H∗p ⊕ V∗p , p ∈ T ∗M.

Here Vp = Ker π∗p (vertical subspace at p ) and Hp is the horizontal subspace at p.
By using this splitting, Patterson and Walker [26] introduced a neutral metric–

called the Riemann extension of ∇. The Riemann extension gR is defined by

gR(X̃, Ỹ ) = Ω(ΠH(Ỹ ), ΠV(X̃)) + Ω(ΠH(X̃),ΠV(Ỹ )).

Here ΠH and ΠV denotes the projections X (T ∗M) → Γ(H∗) and X (T ∗M) → Γ(V∗)
respectively. See also [34]. In [34], Willmore showed that by making use of Riemann
extension it is possible to define an affine immersion of manifolds in affine differential
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geometry without making a suitable choice of normal planes. By definition, the
Riemann extension depends only on the connection ∇.

As in the geometry of TM , vertical and horizontal lift operations V : X (M) →
Γ(V∗), H : X (M) → Γ(H∗) for vector fields to T ∗M can be introduced. Now let us
define an almost complex structure J on T ∗M by

JXh = Xv, JXv = −Xh, X ∈ X (M).

Then one can prove the following

Proposition A.1 Let (M,∇) be a manifold with a linear connection.
Then (T ∗M, gR, J) is an almost complex manifold with Norden metric gR. In partic-
ular (T ∗M, gR, J) is a complex manifold with Norden metric if and only if (M,∇) is
flat.

Let h be a semi-Riemannian metric on (M,∇). Then the pulled back one form ϑh

of ϑ by [ is
ϑh := [∗ϑ = hijuidxj .

The pulled-back 2-form Ωh of Ω is

Ωh = dxi ∧ d(hijpj).

On a semi-Riemannian manifold (M, g,∇0) with its Levi-Civita connection, its
tangent bundle (TM, gc) with complete lift metric is isometric to (T ∗M, gR). Under
this identification, we notice the following fact (cf. [13], [34]):

Proposition A.2 Let (M, g,∇0) be a semi-Riemannian manifold with its Levi-Civita
connection. Then (TM, gc) is conformally flat if and only if (M, g) is projectively flat.

In information geometry, α-conformal flatness [16], [25] and conformal-projective
flatness are studied extensively [18], [21], [28].

Problem A.3. Let (M,h,∇) be a statistical manifold.
When is the tangent bundle (TM, hc,∇c) conformal-projectively flat ?
When is (TM, hc,∇c) α-conformally flat ?

A.2 Remarks on Norden metrics

In [5], the authors proved that on an almost Hermitian manifold (M,J, g), its tangent
bundle TM together with complete lift metric gc and natural lift J̃ of J is an almost
complex manifold with Norden metric. Here the natural lift J̃ is defined by

J̃Xh = −(JX)h, J̃Xv = (JX)v, X ∈ X (M).

Note that, J̃ is different from the horizontal lift Jh. In fact, the horizontal lift Jh

with respect to ∇0 is defined by

JhXh = (JX)h, JhXv = (JX)v, X ∈ X (M).

On the other hand, according to our observation, we have gotten the following fact:
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Proposition A.4 Let (M, g,∇0) be a semi-Riemannian manifold with Levi-Civita
connection. Then (TM, gc) with canonical almost complex structure J with respect to
∇0 is an almost complex manifold with a Norden metric.

Moreover we give here another construction of almost complex manifolds with
Norden metric.

Proposition A.5 ([4]) Let (M, g, J) be a Kähler manifold. Then its tangent bundle
TM admits a Norden-Kähler structure. Namely a complex structure (J, g) together
with a Norden metric g such that J is parallel with respect to the Levi-Civita connec-
tion of g.

Proof. Let us denote the Nijenhuis tensor of J by NJ . Since the Nijenhuis tensor of
Jc is (NJ)c, (TM, Jc) is complex. Moreover ∇cJc = 0 by Proposition 6.7 of [36]-Part
I. Thus (TM, gc, Jc) is a Norden-Kähler manifold. 2

Remark A.6. Let (M, g, J) be a flat Kähler manifold. Then its tangent bundle TM
together with Sasaki lift metric gS and the horizontal lift Jh is a Kähler manifold (see
[4]).
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